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Abstract
This work is based on a cooperative co-evolution algorithm called ‘Fly Algorithm’, 
which is an evolutionary algorithm (EA) where individuals are called ‘flies’. It is 
a specific case of the ‘Parisian Approach’ where the solution of an optimisation 
problem is a set of individuals (e.g. the whole population) instead of a single indi-
vidual (the best one) as in typical EAs. The optimisation problem considered here 
is tomography reconstruction in positron emission tomography (PET). It estimates 
the concentration of a radioactive substance (called a radiotracer) within the body. 
Tomography, in this context, is considered as a difficult ill-posed inverse problem. 
The Fly Algorithm aims at optimising the position of 3-D points that mimic the 
radiotracer. At the end of the optimisation process, the fly population is extracted as 
it corresponds to an estimate of the radioactive concentration. During the optimisa-
tion loop a lot of data is generated by the algorithm, such as image metrics, duration, 
and internal states. This data is recorded in a log file that can be post-processed and 
visualised. We propose using information visualisation and user interaction tech-
niques to explore the algorithm’s internal data. Our aim is to better understand what 
happens during the evolutionary loop. Using an example, we demonstrate that it is 
possible to interactively discover when an early termination could be triggered. It 
is implemented in a new stopping criterion. It is tested on two other examples on 
which it leads to a 60% reduction of the number of iterations without any loss of 
accuracy.
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InfoVis	� Information visualisation
CSV	� Comma-Separated Values
CCEA	� Cooperative co-evolution algorithm
CT	� Computed tomography
SPECT	� Single-photon emission computed tomography
SNR	� Signal-to-noise ratio
MRI	� Magnetic resonance imaging
keV	� Kiloelectron volt
LOR	� Line of response
MLEM	� Maximum-Likelihood Expectation-Maximization
EM	� Expectation-Maximization
OSEM	� Ordered Subset Expectation-Maximization
voxel	� Volume element
SVG	� Structured Vector Graphics
MAE	� Mean absolute error
MSE	� Mean squared error
RMSE	� Root mean squared error
ZNCC	� Zero-normalised cross-correlation
PSNR	� Peak signal-to-noise ratio
SSIM	� Structural similarity
DSSIM	� Structural dissimilarity
TV	� Total variation

1  Introduction

This research is related to the use of evolutionary computing in nuclear medi-
cine, more particularly positron emission tomography (PET) reconstruction. In 
this paper, we investigate the use of information visualisation (InfoVis) and data 
exploration to understand some of the behaviours of an evolutionary algorithm 
(EA). In particular, we want to assess if the algorithm could have been stopped 
earlier to get a reasonable solution instead of waiting until the algorithm ends and 
using the final solution as the problem answer.

The combination of visualisation and evolutionary computing is still a rela-
tively overlooked field. Two different approaches can be distinguished:

•	 visualisation to understand an evolutionary algorithm [30, 38, 52, 53], and
•	 interactive artificial evolution to improve the visualisation [9, 24, 36].

First attempts were reported at the end of the 90s. Early visualisations were using 
relatively basic techniques that mostly relied on plotting with limited or no interac-
tivity. During the evolutionary PET reconstruction, multiple time series are recorded 
hundreds of thousands of times. Comparing these time series by hand using typical 
scatterplots and line charts with no interactivity is not practically feasible:
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•	 The order of magnitude of each time series is different. They would need to be 
independently normalised before plotting.

•	 Trial and error would be needed to choose the axis of interest because it is not 
necessarily straightforward to do so without a deep a priori understanding of the 
data.

•	 Adjusting the data range visualised in the scatterplots would also need to be per-
formed with trial and error.

•	 Displaying selected images would need to be done manually.

The use of Parallel Coordinate Plots is very popular to visualise high-dimensional 
geometry and analyse multivariate data  [28], which is the type of data considered 
here. Interactivity using the brushing technique  [37] makes it feasible to easily 
explore parts of this high-dimensional space and visually analyse this complex mul-
tivariate dataset. This is the approach we adopted here to develop an integrated visu-
alisation framework dedicated to our evolutionary PET reconstruction algorithm.

The emergence of information visualisation and data analytics is opening 
new doors for its use in the evolutionary computing domain. We adopt the first 
approach to analyse the evolutionary process of our image reconstruction algo-
rithm for tomography in nuclear medicine. In typical evolutionary algorithms, the 
best individual of the final population is the solution of the optimisation problem. 
Our algorithm relies on the Parisian approach where the solution to the problem 
is a group of individuals, e.g.  the whole population or a subset of the popula-
tion. The population size progressively increases to improve the resolution of the 
output image. The algorithm is launched with input parameters such as the initial 
number of individuals, the final number of individuals, the probability of opera-
tors, etc., the final solution is extracted at the end of the optimisation process then 
converted into a problem-specific answer. A lot of the data is generated during the 
evolution process, in particular data based on error metrics and correlation meas-
urements. Traditionally all this data is discarded at the end of the evolutionary 
process, as only the final population is considered. Our hypothesis is that inter-
mediate populations and internal data should not be systematically discarded as 
they can be reviewed offline. They can be used to analyse the performance of the 
population over time. When using stagnation as the stopping criterion, the final 
population is not necessarily the best one due to oscillations around the minimal 
fitness value. In such a case, past generations will have to be accessible. Also, 
reaching the targeted number of individuals may not be necessary if the recon-
structed image stops improving. Offline analysis of intermediate results makes 
it possible to look at quality metrics other than the fitness value, e.g.  smooth-
ness of the reconstructed image. Our initial goal is to extract the best possible 
solution in terms of fitness function and smoothness of the reconstructed image. 
The aim is to identify the smallest population that could be used as the solution 
instead of the final population to reduce the computing time as much as possible 
without compromising the quality of the reconstructed PET image. In the case 
study considered below 20  measurements were repeated thousands of times at 
regular intervals during the evolutionary process. It corresponds to a dataset that 
includes several hundreds of thousands of samples. Multivariate analysis can be 
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used to highlight relationships and correlations in the dataset [7]. Analytic tasks 
that are involved include value retrieving, filtering, extremum identification, and 
range determination [6]. For this purpose, we use interactive parallel coordinate 
and scatterplots to visually analyse this dataset.

Our contribution demonstrates how simple interactive visualisation techniques 
such as Parallel Coordinate Plots, scatterplot and image display can be used to ana-
lyse complex datasets generated using the temporal internal data of the evolution-
ary algorithm. The paper illustrates how it can be used to analyse the behaviour of 
the algorithm over time. This task would be extremely difficult without interactive 
visualisation. Well-designed user interaction and effective visualisation make it rela-
tively easy. Our approach can be generalised to improve the performance of other 
special purpose evolutionary algorithms. We have re-implemented our evolutionary 
reconstruction algorithm to output a large Comma-Separated Values (CSV) log file 
with time series of image metrics (including error distances, correlation measure-
ments, and smoothness) as well as internal states of the algorithms (e.g.  iteration 
number, population size, and average probability of genetic operators) and store 
intermediate results (e.g.  reconstructed images). A simple, but yet effective, visu-
alisation framework has been purposely developed to explore data embedded in the 
log file and display the intermediate results based upon user interactions. It is used 
to assess the behaviour of the evolution process over time. The relationship between 
different properties of the reconstruction can also be examined. Using a case study, 
it helped us to ascertain that allocating more computation time to the reconstruc-
tion algorithm did not lead to a significant improvement in accuracy. We propose an 
alternative early stopping criterion that looks at both the global fitness of the popula-
tion and the smoothness of the reconstructed image over the last 500  iterations. It 
is tested multiple times using three test cases with and without this new stopping 
criterion.

Section 2 is a brief introduction to the application considered here: nuclear medi-
cine and PET imaging. It provides an insight into the main principles of nuclear 
medicine and how they can be used in imaging to provide a 3-D map of radioac-
tive concentration through the patient’s body. The evolutionary framework, Parisian 
Evolution, used in this application is described in Sect. 3. In evolutionary comput-
ing, the answer to the optimisation problem is a single individual, the one with the 
best fitness. Parisian Evolution is a class of Cooperative Co-evolution Algorithms 
(CCEAs) where the answer to the optimisation problem is a group of individuals 
(e.g. the whole population). Section  4 presents the Fly Algorithm. It is an exam-
ple of Parisian Evolution dedicated to imaging problems such as computer stereo 
vision and tomography reconstruction. Its application to tomography reconstruction 
is described in Sect. 5. The next section develops the information visualisation tech-
niques that we used to explore the internal data generated by successive iterations 
of the Fly Algorithm. Section 7 discusses how the visualisation is exploited to help 
us select the ‘best’ reconstructed image. It is also used to design a new early stop-
ping criterion. It is followed by a conclusion that summarises our contributions and 
it provides ideas for further work. For clarity, a glossary of (mathematical) terms 
specific to this application in nuclear imaging, and a list of acronyms are provided at 
the end of the article.
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2 � Emission tomography in nuclear medicine

In nuclear medicine, a radiopharmaceutical (i.e. radioactive substance) is admin-
istered to the patient. The radioisotope is fixed on a given molecule that is going 
to be absorbed by the body in relation to a targeted physiological process, such 
as tumour growth, bone fracture, or reduced blood flow in the heart. Imaging 
in this context is a type of molecular and functional imaging. In other words, 
a physiological function is targeted by the radioactive molecule. In Oncology, 
the molecule will be fixed by tumours because of the growth of cancerous cells. 
This is why tumours are highlighted in Fig. 1. The radioactive concentration is 
a lot higher in tumours than healthy tissues, which leads to more emission from 
the tumours. For this reason tomography in nuclear medicine is called emis-
sion tomography (ET): The source of radiation is within the patient. There are 
two main techniques: single-photon emission computed tomography (SPECT) 
and PET. They both produce a stack of 2-D cross-sections through the human 
body, which corresponds to a 3-D map of the radioactive concentration within the 
patient (see Fig. 1b). We focus in this paper on PET as it is now the main tech-
nique in nuclear medicine imaging.

Figure  2 shows the principle of the PET data acquisition chain. Images pro-
duced in ET have a relatively low resolution (typically 128 × 128 pixels) and sig-
nal-to-noise ratio (SNR). Well-known tomography techniques used in radiology 
departments, such as computed tomography (CT) and magnetic resonance imag-
ing (MRI) generate images with a much higher resolution (typically 512 × 512 
pixels) and SNR (see Fig. 1a). They are used to visualise anatomical structures. 
Modern medical scanners now combine PET with either CT or MRI to provide 
collocated physiological and anatomical image datasets (see Fig. 1c).

Fig. 1   PET-CT examination of a “head and neck” patient in Oncology. In this case tumours were not 
visible on the anatomic images from CT, but were on the physiological images from PET. Top row: axial 
plane; middle row: coronal plane; and bottom row: sagittal plane. a CT data, b PET data, c PET-CT data. 
Source: the Cancer Imaging Archive (http://www.cance​rimag​ingar​chive​.net/) [21]

http://www.cancerimagingarchive.net/
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To obtain such images by tomography, regardless of the modality, a reconstruc-
tion algorithm is performed after the data acquisition. It aims to generate the stack 
of 2-D images from the original projection data. It is therefore important to under-
stand the data acquisition process in PET and what the projection data might be. In 
PET, the positron (often shortened as e+ or �+ ) is the type of ionising radiation that 
is used. When a positron collides with an electron ( e− ), an annihilation reaction may 
occur. In this case, two photons ( � ) are emitted at almost 180◦ of each other with a 
kinetic energy of 512 kiloelectron volts (keV). Note that photons are the elemen-
tary particle of light. Pairs of annihilation photons are detected in coincidence, i.e. at 
almost the same time, by a dedicated scanner. The line joining the two detectors 
(see red parallelepipeds in Fig. 2) that caught the photons of the same pair is called 
line of response (LOR) (see red line in Fig. 2). Each detector of the PET scanner 
has a unique identifier. All the pairs of detectors corresponding to the LORs are 
recorded by the system. However, the exact locations of the annihilation reaction 
are unknown. PET reconstruction aims at producing the 3-D volume of radioactive 
concentration from the recorded LORs. Dedicated algorithms can be used to exploit 
LOR data directly, this is called list-mode reconstruction. LOR data can also be con-
verted into sinograms as this is a common data representation [23] that stores a set 
of 1-D projections at successive angles in a 2-D image (see Fig. 9). They can be 
used with conventional tomography reconstruction algorithms. To convert a LOR 
into a point into the sinogram, the angle between the LOR and the horizontal axis is 
computed (see � in Fig. 3). The shortest distance between the LOR and the origin of 

Fig. 2   PET data acquisition: 
1 e− combines with 1 e+ ; it 
may results in an annihilation 
reaction, which generates 2 � of 
512 keV emitted at about 180◦ ; 
the line joining the pair of detec-
tors activated by this pair of � is 
called LOR; the system records 
many LORs; this data is used 
by the reconstruction algorithm 
(possibly after conversion into 
a sinogram, see Fig. 3) (Color 
figure online) LOR

e−γ1

γ2e+
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the system is also computed (see r in Fig. 3). The intensity of pixel(r, � ) in the sino-
gram is derived from the number of corresponding LOR events detected by the PET 
scanner. Note that we will use this format in this paper, although we demonstrated 
in [45, 46] that LOR data can be used within our algorithm.

Tomography reconstruction is an ill-posed inverse problem due to missing data 
and photonic noise (Poisson noise) in the measured photon count. Noise is actually 
a major concern in ET. Statistical iterative reconstruction takes into account Pois-
son noise in the measured photon count. This is why Maximum-Likelihood Expec-
tation-Maximization (MLEM) and its derivatives, such as Ordered Subset Expec-
tation-Maximization (OSEM) are the main methods used in nuclear medicine [27, 
39, 43]. One of the main issues with MLEM-based algorithms is the difficulty to 
choose a good stopping criterion  [13] as they rely on a non-converging method. 
When the number of iterations increases the reconstruction offers a better resolu-
tion but becomes noisy, which is not the case with our evolutionary reconstruction 
framework.

The reconstruction can be considered as an optimisation problem. Evolutionary 
computing is known to perform well, in general, when solving hard ill-posed problems, 
and in particular in medical imaging [15, 20, 49, 50]. It is a class of stochastic optimisa-
tion tool that relies on Darwin’s principles to mimic complex natural behaviours [10]. 
A proof-of-concept of evolutionary reconstruction was initially developed with a rela-
tively basic Fly Algorithm  [45, 46]. The implementation supported list-mode recon-
struction using LOR data as well as conventional reconstruction using sinograms. More 
advanced genetic operators (namely threshold selection, mitosis and dual mutation) 
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were proposed [47] and validated against commonly used genetic operators [48]. More 
sophisticated mutation operators were proposed and evaluated to speed up computa-
tions and to further improve the accuracy of the reconstructions  [1]. The algorithm 
optimises the position of 3-D points that mimic pairs of annihilation photons. The out-
put is, therefore, a set of points known as ‘point cloud’. The extraction of the solution 
and how to convert this point cloud into volume elements (voxels) have already been 
addressed [5]. It relies on using implicit modelling and used the individuals’ fitness as a 
confidence measurement to adjust their individual footprint in the final image. Results 
were comparable or better than those obtained with OSEM on the test cases used.

3 � Parisian evolution

In Parisian Evolution, the population of individuals is considered as a society where the 
individuals collaborate toward a common goal. This is implemented using an EA that 
includes all the common genetic operators (e.g. mutation, cross-over, and selection). 
The main difference is in the fitness function landscape. In Parisian Evolution there are 
two levels of fitness function. 

Local fitness function:	� to assess the performance of a given individual. It is used 
during the selection process. For an individual, improving 
its local fitness means increasing its chances of breeding.

Global fitness function:	� to assess the performance of the whole population. 
Improving (maximising or minimising depending on the 
problem considered) the global fitness is the goal of the 
population.

In addition, a diversity mechanism is required to avoid individuals gathering in only 
a few areas of the search space. Another difference between classical EAs and Parisian 
Evolution is in the extraction of the solution once the evolutionary loop terminates. In 
classical evolutionary approaches, the best individual corresponds to the solution and 
the rest of the population is discarded. Here, all the individuals (or individuals of a sub-
group of the population) are collated to build the problem solution. The way the fitness 
functions are constructed and the way the solution is extracted, are problem-dependent.

Parisian Evolution has been successfully applied to various optimisation problems, 
such as text-mining [31], hand gesture recognition [29], complex interaction modelling 
in industrial agrifood processes [11, 12], and imaging problems [22] such as computer 
stereo vision [33] and tomography reconstruction [5].

4 � Fly Algorithm and its applications

The Fly Algorithm is a good example of Parisian Evolution  [17]. It was initially 
proposed in computer stereo vision to extract 3-D information from pairs of digital 
images. The algorithm is a fast evolutionary algorithm that can be used to detect the 
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location of obstacles  [33, 34]. It is used in autonomous robot navigation to avoid 
collision with objects and walls.

The Fly Algorithm evolves a population of flies. Each fly is defined as a 3-D point 
with coordinates (x, y, z) in the solution space. A set of 3-D points is often called 
point cloud in the literature. Flies are projected to compute the local fitness function. 
This projection operator is problem-specific. In stereo vision applications, each fly 
is projected twice: once on the image taken from the left camera and once on the 
image taken from the right camera [35]. When a fly is located on the surface of an 
object, the pixel neighbourhood of its two projections will match; when a fly is not 
located on the surface of an object, the pixel neighbourhood of its two projections 
will be significantly different. The fitness function is designed to take advantage of 
this fact: The fitness of a fly measures the consistency between its two projections. 
The algorithm will optimise the 3-D position of the flies so that their projections on 
the left-hand side and right-hand side 2-D images are similar.

The Fly Algorithm is implemented as any other EA. It starts with a population 
of randomly generated individuals. They are the parents. Then, depending on the 
genetic operators (selection, mutation, new blood, etc.) that are applied to the par-
ents, a population of new individuals, the offspring, is produced. Selection is used 
to pick up candidate parents for breeding. Mutation is used to randomly alter the 
genes of an individual. New blood corresponds to creating a randomly generated 
individual. This simple, but yet effective, operator preserves diversity in the popula-
tion. Note that crossover is not generally used in the Fly Algorithm because if there 
are two good flies on different objects, creating a new one in between is likely to 
produce a bad fly. The fitness function determines the validity of a fly’s position and 
it is calculated during the selection process. The new generation of offspring eventu-
ally becomes parents. The same operations are repeated until a stopping criterion is 
reached. This approach is called ‘Generational Fly Algorithm’ [42].

A Steady-State approach is also possible (see Fig. 4). Using this approach, a bad 
fly is selected at each iteration and replaced by a new one. The rationale is that the 
new one is likely to be better and there is no reason to delay using it [42]. We follow 
this approach for PET reconstruction.

A decade after the initial developments of the Fly Algorithm in robotics; it was 
adapted to SPECT reconstruction [18], then to PET [1, 5, 45–48]. It has also be used 
in filtering to generate artistic effects on images [2–4].

5 � Evolutionary reconstruction in PET

The data acquisition in PET can be described as:

where f is the radioactive concentration, which is unknown; Y the observations 
(known data as measured by the scanner); and P the system matrix or projection 
operator (it transforms the radioactive concentration into projections). For iterative 
reconstruction, scanner geometry, noise, etc. can be modelled in P. Tomography 
reconstruction corresponds to solving:

(1)Y = Pf
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Fig. 4   Overall flowchart of a Fly Algorithm in steady-state
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where P−1 is the inverse transformation. This is why tomography reconstruction 
is an inverse problem. However directly applying the inverse transformation is not 
trivial due to noise in Y and missing data: tomography reconstruction is ill-posed. 
Optimisation can be used to produce an estimate f̂  of f using Y so that:

where Ŷ  is the projection data corresponding to f̂  ( ̂Y = Pf̂  ); and ||Y − Ŷ||2
2
 is the �2

-norm, also known as Euclidean distance, between Y and Ŷ:

Evolutionary reconstruction using the Fly Algorithm corresponds to the iterative 
paradigm (see Fig. 5). The initial guess is a population ( f̂  ) of flies randomly located 
within the object space. Projections ( ̂Y  ) are computed from the population and are 
compared with the data (Y) from the medical scanner. To that effect, an error metric 
between the two images is measured (see Eq. 4), this is the global fitness. It is the 
numerical value that the optimisation algorithm will minimise. Errors are corrected 
using the application of genetic operators (mainly selection, mutation, new blood, 
and mitosis). The aim is to optimise the position of each fly so that the projection 
data of the whole population closely matches the one from the real radioactive con-
centration. The process is repeated until a stopping criterion is met. After conver-
gence, the point cloud made by the flies is an estimate of the real radioactive con-
centration. The point cloud is then sampled to produce voxel data [5].

We employ a steady-state EA (i.e. evolution strategy of type �∕� + 1 ) as in Fig. 4 
where, at each iteration, a bad fly is selected for death and replaced using a genetic 
operator (mutation or new blood). To evaluate the performance of a single individ-
ual (Fly  i), we use the marginal fitness ( Fm(i))  [18]. It relies on the global fitness 
with the leave-one-out cross-validation principle:

(2)f = P−1Y

(3)f̂ = argmin
‖‖‖Y − Ŷ

‖‖‖
2

2

(4)‖‖‖Y − Ŷ
‖‖‖
2

2
=

√√√√
y<h∑

y=0

x<w∑

x=0

[
Y(x, y) − Ŷ(x, y)

]2

Estimate image

f̂

Initial guess
(flies with random positions)

Compute
projections

CompareProjections Ŷ = P [f̂ ]

computed from f̂

Observaionts

(Y )

Error metrics

Y − Ŷ
2

2

Correct for errors
(kill a bad fly and create a new one using genetic operators)

Fig. 5   Iterative reconstruction paradigm
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where Ŷ ⧵ {i} is the estimated projections without the photons simulated by Fly  i. 
The idea behind the leave-one-out cross-validation is to assess the error metric 
twice: once with Fly i in the population, and once without it. By comparing the two 
values (the subtraction in Eq. 5) we can determine if having Fly i is beneficial or not 
for the population. If Fm is positive, the error is smaller when the fly is included: 
the fly has a positive impact on the population’s performance. It is a good fly, i.e. a 
good candidate for reproduction. If Fm is negative, the error is larger when the fly is 
included: the fly has a negative impact on the population’s performance. It is a bad 
fly, i.e.  a good candidate for death. Fm is, therefore, a measure maximised by the 
algorithm. We use this principle to define the ‘threshold-selection’ operator [47, 48]: 
to choose a fly to kill, find a fly with Fm ≤ 0 ; and to choose a fly to reproduce, find 
a fly with Fm > 0 . When the number of bad flies is low, the threshold-selection will 
struggle to find flies to kill. It provides a good stopping criterion.

Note that our implementation is multi-resolution and includes an extra loop that 
is not presented in Fig. 4. We start with a low number of flies (e.g. 25). When con-
vergence is detected, each fly is duplicated to double the population size (see mitosis 
operator in [47, 48]). Each new fly is then mutated. Then the evolutionary process 
carries on until convergence is detected again. When the number of flies reaches 
a limit set by the user, and when convergence is detected, the reconstruction pro-
cess ends. Note that details about our mutation operators are available in [1]. In the 
test cases presented below, we will use the new blood, basic mutation, and adaptive 
mutation operators. Also, note that the implementation is fully adaptive: operator 
probabilities are encoded by flies and undergo mutations.

Several stopping criteria can be used. Stagnation can be detected if the threshold 
selection operator struggles to find a bad fly several times in a row. The goal of the 
population is to minimise the global fitness as it is an error measurement. Stagnation 
can also be detected if the global fitness stops decreasing over a given number of 
iterations.

6 � Data exploration

To assist in tuning the evolutionary algorithm, the complex interplay of each met-
ric needs to be understood. Examining the raw data in numeric form is often error-
prone and limited by the exact process employed by the researcher. There are other 
methods, such as writing bespoke analysis programs or the use of summary statistics 
in a spreadsheet application. These methods are then limited by capability of the 
tools, and results are still provided in text form which can be harder to reason with. 
The field of Visual Analytics provides another alternative; exploiting the visual pro-
cessing and reasoning abilities of the human being  [26]. Systems built for visual 
analytics can be expanded to use multiple views [41] of the same dataset highlight-
ing deeper relationships and patterns. Therefore, we substitute the exact metric value 

(5)Fm(i) =
‖‖‖Y −

(
Ŷ ⧵ {i}

)‖‖‖
2

2
−
‖‖‖Y − Ŷ

‖‖‖
2

2
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for a graphical and/or spatial surrogate. In this form, relation of metrics becomes an 
easier task requiring less mathematical and domain-specific knowledge.

The Fly implementation produces a multivariate output, which may or may not be 
interrelated. In order to achieve the goal of inferring those relationships, our design 
choices are limited to multivariate relationship techniques. The common options in 
this situation are Heatmaps, Marimekko Charts, Parallel Coordinate Plots, Radar 
Charts, and Venn diagrams  [40]. As Heatmaps and Marimekko charts are limited 
in the number of variables they can display  [51], and Venn diagrams become dif-
ficult to read beyond three variables; we must discount these options. Radar Charts 
are able to handle a larger number of variables, limited by the sweep angle between 
each axis. In theory without needing actual scale values, the chart could support 
360 different axes; however, in practice the limit is substantially lower. An addi-
tional factor is that individuals (results in our case) are plotted over each other. Even 
with opacity effects it becomes more difficult to visually separate the individuals or 
extract patterns.

This requirements analysis leaves Parallel Coordinate Plots as the logical 
choice [54]. Parallel Coordinate Plots  [28], first popularised in computerised form 
by Alfred Inselberg, visualise data in the form of multiple linked axes on one graph. 
The plot will still suffer from over-plotting where results share equal/similar val-
ues. These axes are scaled such that each domain is represented in the same length. 
These axes represent different measurements, or facets, of the objects in the dataset. 
Objects, known as instances, are plotted as a traditional straight line graph on these 
co-measurable axes. These plots are used to identify clusters [55] and identify prop-
erties of those clusters/subsets [8].

Visualisations are most effective when they not only show information but allow a 
user to answer their own questions by interacting with the data [32]. The tool allows 
the axes to be re-positioned and re-ordered to make any relationships more clear. 
Parallel Coordinate Plots most often deal with ranges rather than individuals. When 
selecting ranges of data, most tools implement the Brushing  [37] technique. This 
allows the user to select multiple items in one stroke as if they were being painted 
with a brush. Our tool allows as many brushed ranges as there are axes, allowing 
users to precisely select items of interest, removing or fading unrelated data from the 
view. Off-the-shelf computer programs, such as Tableau [44] or Grapheur [14, 19], 
can be readily used to perform the visualisation of CSV files using Parallel Coordi-
nate Plots and scatterplots. However, the customised task-specific interactions, high-
lighted later, may not be possible.

The proposed visualisation is produced using a browser-based library, D3.js 
[16], which produces Structured Vector Graphics (SVG) images. The library is 
written in JavaScript, with the visualisation code also written in JavaScript. D3 
includes multiple methods for loading and processing data. This system processes 
the CSV log files produced by the evolutionary process into JavaScript arrays. 
Time series were recorded over the evolution process. Each row of the file con-
tains the data as follows: time stamp, population size, global fitness, correspond-
ing images saved flag, common error/similarity metrics between Y and Ŷ  as well 
as between f and f̂  (namely mean absolute error (MAE), mean squared error 
(MSE), Euclidean distance, root mean squared error (RMSE), zero-normalised 
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cross-correlation (ZNCC), SNR, peak signal-to-noise ratio (PSNR), structural 
similarity (SSIM), structural dissimilarity (DSSIM)), smoothness of Ŷ  and f̂  
using total variation, and internal states of the evolutionary algorithm (e.g. prob-
ability of the various genetic operators).

The visualisation code selects user-specified columns (metrics) to make avail-
able as axes in the Parallel Coordinate Plot. Users are also offered the option 
to colour the lines produced according to another column (whether plotted or 
not). The values of that column are converted into a linear range between two 
user-specified colours. The tool uses the LAB colour space and HCL interpola-
tion  [25]. This results in the perceived difference in plot colour being propor-
tional to the Euclidean distance of the colouring metric, i.e. items close to each 
other in the metric space will be similarly coloured in the plot. An example of 
this version can be seen in Fig. 6. A subsequent version added Brushing capabil-
ity to the system. This implementation fades un-brushed lines to grey and leaving 
those of interest in their original colour. An example of this version can be seen 
in Fig. 7.

When (exactly) two axes are brushed, the coordinated scatterplot is also drawn. 
The scatterplot uses the range of the two brushed axes and only plots selected 
data. The Y-axis represents the lowest numbered (leftmost) axis. The colouring 
from the main plot is also maintained. As columns may not be in the desired 
order, the Parallel Coordinate Plot allows axes to be dragged left and right into 
the order required. The corresponding scatterplot to Fig. 7 is shown in Fig. 8. As 
the evolutionary process generates representative images at pre-set intervals, the 
points plotted are either a smaller circle, where such an image is unavailable, or a 
larger square where it is.

Combining these techniques, we have produced a powerful exploratory tool. It 
allows researchers and practitioners to gain insight into the performance of their 

Fig. 6   Initial prototype Parallel Coordinate Plot showing an initial run of the evolutionary process. 
Objects are coloured according to their iteration number, included as the first axis. This is a screen-shot 
captured from the tool itself, the labels are clearer in the tool (Color figure online)
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algorithms in an intuitive visual way. The Parallel Coordinate Plots unveil poten-
tially masked correlations and relationships within a dataset, and the scatterplot 
allows reasoning about efficiency and potential tuning options. A demonstration 
can be seen with a modern web-browser at http://fly4p​et.fpvid​al.net/visua​lisat​
ion/.

Fig. 7   The same dataset as in Fig. 6, with Brushing active on axes 3 and 5 (dEuclid_sinogram and TV_
reconstruction). The ranges selected are shown by the tinted rectangle overlaid on those axes. This is a 
screen-shot captured from the tool itself, the labels are clearer in the tool

Fig. 8   The coordinated scatterplot for Fig. 7. Items are coloured as in the original figure, a smaller circle 
represents denotes that no image is available for that point and a larger square does. This is a screen-shot 
captured from the tool itself, the points and labels are clearer in the tool (Color figure online)

http://fly4pet.fpvidal.net/visualisation/
http://fly4pet.fpvidal.net/visualisation/
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7 � Results

In past implementations [1, 5, 45–48], the final result given by the last iteration is con-
sidered as the reconstructed image. It provides a simple way to extract the answer of the 
optimisation problem, but it is not certain that it is the best answer that the evolutionary 
process provided. Our initial goal with the visualisation tool was to gain an understand-
ing of what happens during the evolutionary process. A subsequent goal was to identify 
a ‘good’ reconstruction as quickly as possible. The ultimate goal was to develop stop-
ping criterion dedicated to the Fly Algorithm in tomography reconstruction to automat-
ically limit the reconstruction duration to its minimum level whilst still preserving the 
accuracy of the results. A good reconstruction is when the error between the simulated 
projection data ( ̂Y ) and the input data (Y) is extremely low and when the noise levels in 
the reconstructed volume ( f̂  ) are low.

Our initial assertion was that the huge amount of data generated by the evolution-
ary loop should not be discarded as it has the potential to actually be extremely useful 
to understand the reconstruction algorithm. Our initial goals were to extract the best 
possible solution rather than simply take the final one and to determine if any other 
comparable solution could have been extracted earlier on to speed-up the reconstruc-
tion time. For this purpose, we performed a reconstruction using a controlled test case 
and analyse the results using our visualisation. The observation data (i.e. known data) 
is presented in Fig. 9a. The ground-truth (i.e. unknown data) is presented in Fig. 10a. 
Table 1 shows the initial parameters of our Fly Algorithm for this test case.

To measure the level of similarity between two images, whether they are f and f̂  or Y 
and Ŷ , we use the ZNCC:

where w and h are the number of pixels along the horizontal and vertical axes in 
r(x, y) and t(x, y) respectively, r̄ is the average pixel value of r and �r is standard 
deviation of r. The ZNCC is equal to 1 if the two images are perfectly correlated, 0 

(6)ZNCC(r, t) =
1

w × h

y<h∑

y=0

x<w∑

x=0

(r(x, y) − r̄)(t(x, y) − t̄)

𝜎r𝜎t

Fig. 9   Sinograms. a Y: input data (known), b Ŷ
113401

 : sinogram of the reconstruction manually selected in 
Fig. 15b (see green circle), c Ŷfinal : sinogram of the final reconstruction at the end of the evolution (Color 
figure online)
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if they are totally uncorrelated, and -1 if they are perfectly anticorrelated (one is the 
negative of the other). The ZNCC is often expressed as a percentage. This image 
metric is very popular in image-processing and computer vision.

To measure the smoothness level of the reconstructed image f̂  , we use the 
total variation (TV) (also known as TV-norm):

where ∇(x, y) is the gradient of the corresponding image at pixel x, y. In the discrete 
cases, it can be computed as follows:

Noisy images will have a higher TV-norm than smoother images. It can be used to 
compute a level of quality.

Defining what is the ‘best solution’ is not trivial:

–	 Traditionally it is the final population after convergence (#284,250).

(7)
‖‖‖f̂
‖‖‖TV = ∫y ∫x

‖‖‖∇f̂ (x, y)
‖‖‖1dxdy

(8)‖‖‖f̂
‖‖‖TV =

y<h−1∑

y=0

x<w−1∑

x=0

√
(f̂ (x, y) − f̂ (x + 1, y))2 + (f̂ (x, y) − f̂ (x, y + 1))2

Fig. 10   Reconstructed images. a f: ground-truth (unknown), b f̂
113401

 : reconstruction manually selected 
in Fig. 15b (see green circle), c f̂final : final reconstruction at the end of the evolution (Color figure online)

Table 1   Initial parameters of the 
evolutionary algorithm Global fitness function �

2-norm
Initial population size 25
Final population size 25,600
Initial new blood probability 1/3
Initial basic mutation probability 1/3
Initial adaptive mutation probability 1/3
Selection threshold struggle 5 times in a row
Global fitness stagnation 5 times in a row ( � = 1E-2)
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–	 A good candidate solution is also the one that provides the lowest global fitness 
( ||Y − Ŷ||2

2
 ). In our test case, it is #269,301.

–	 It can also be the population that gives the lowest discrete TV seminorm of 
the reconstructed image ( ||f̂ ||TV ). Its first occurrence is #199,101 and its last is 
#274,101.

–	 Ideally, the best solution should provide the highest ZNCC with the ground-truth 
(f) ( ZNCC(f , f̂ ) ), but it cannot be assessed in the reconstruction as it is not avail-
able in real cases because f is unknown. However, it can be used with test cases 
to analyse the behaviour of our algorithm.

–	 Also, a good iteration should, if possible, have a relatively small cumulative 
computation time up to that iteration.

We summary the performance of reconstruction at different iterations in Table 2. 
It presents the reconstruction cumulative computation time, the global fitness, the 
ZNCC between the input projections and simulated projections ( ZNCC(Y , Ŷ) ), the 
TV of the reconstructed image and the ZNCC between the ground-truth and the 
reconstructed image. In terms of global fitness and TV, the results of the 4  itera-
tions we selected seem to be equivalent. To assess if this is the case, we look at 
ZNCC(f , f̂ ) . The values are within 0.22%. In addition, a plot combining the global 
fitness and ZNCC(f , f̂ ) is also presented (see Fig. 11). The figure shows barely any 
improvement, whether it is for the global fitness or ZNCC, when mitosis occurred 
(see pics in the graph). We can conclude that the results of the 4  iterations we 
selected are relatively equivalent. As we cannot distinguish between the results 
of the 4 iterations when looking at the global fitness and TV, we can consider the 
cumulative computation time (see Fig. 12). We can conclude that #199,101 is the 
‘best’ iteration among #199,101, #269,301, #274,101, and #284,250 because its 
duration is the smallest: it lead to one of the best results in the smallest length of 
time. Spending an extra 6 minutes only marginally improved the results.

With the visualisation tool, we expect that the reconstruction time can be fur-
ther reduced. The initial step is to look at how the global fitness evolves. The 
same dataset as Fig.  6 is plot with Brushing active on ‘iteration_number’ and 

Table 2   Performance of reconstructions at different iterations

The best result for each metrics is in bold, the second best in italic, and the third best in bolditalic. Itera-
tion #113,401 has been selected by hand using our visualisation tool; #269,301 corresponds to the lowest 
global fitness; #199,101 corresponds to the first occurrence of the lowest TV; #274,101 corresponds to 
the last occurrence of the lowest TV; #284,250 corresponds to the last iteration

Iteration # 113,401 199,101 269,301 274,101 284,250
Duration (in min) 7:32 13:15 17:55 18:14 18:55
# of individuals 12,800 25,600 25,600 25,600 25,600

||Y − Ŷ||2
2

10.69E-4 9.49E-4 8.99E-4 9.03E-4 9.06E-4

ZNCC(Y , Ŷ) 99.92% 99.94% 99.95% 99.95% 99.94%

||f̂ ||TV 1.55E-5 1.32E-5 1.33E-5 1.32E-5 1.34E-5

ZNCC(f , f̂ ) 93.20% 93.38% 93.19% 93.22% 93.16%
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‘dEuclid_sinogram’ (see Fig. 13a). Note that we swapped the axes in the figure 
to ensure that the number of iterations corresponds to the horizontal axis, and 
dEuclid_sinogram to the vertical axis in the scatterplot (Fig. 13b). We observe a 
rapid decrease of dEuclid_sinogram with upticks when mitosis occurs. It means 
that the global fitness approaches its minimum at an early stage of the reconstruc-
tion process. In other words, a relatively good reconstruction is achieved quickly 
in terms of data fidelity between Ŷ  and Y but that other image metrics on f̂  may 
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be more relevant to decide when to stop the reconstruction or to pick a better 
reconstructed volume.

The same experiment is performed using TV_reconstruction rather than dEu-
clid_sinogram. Figure 14 shows that ||f̂ ||TV rapidly decreased, but a lot slower than 
dEuclid_sinogram. This is because the more mitosis happens, the more flies there 
are, resulting in less noise. However, we observe a plateau, beyond which the TV 
ceases to decrease significantly. This means that increasing the population size by 
mitosis would increase the duration without improving much the reconstruction. In 
this case, further investigation is needed as it indicates that the reconstruction pro-
cess could have been stopped much earlier, with a lower number of flies.

Fig. 13   Evolution of the global fitness. a Brushing on ||Y − Ŷ||2
2
 and number of iterations, b correspond-

ing scatterplot
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We refine the brushed region to allow us to zoom-in on a low ||f̂ ||TV (see 
Fig. 15a). Our goal is to ascertain that ||Y − Ŷ||2

2
 is still low and minimise the dura-

tion. Ideally, the best possible candidate solution will be in the lower left corner 
of the scatterplot (see Fig.  15b). We selected a candidate solution that is a good 
compromise between time and noise levels (as more iterations do not reduce ||f̂ ||TV 
much) (see green circle in Fig.  15b). It was obtained at 7:32 with 12,800  flies 
whereas the final candidate was obtained in 18:55 with 25,600 flies (see Table 2). It 
corresponds to a speedup of 2.5X.

To further validate our claim that #113,401 is a good candidate, comparable to 
the final one (#284,250), we now look at image data (see Figs. 9, 10 and 16). The 
difference, in terms of ZNCC, for Ŷ  between #113,401 and #284,250 is 0.02% (see 

Fig. 14   Evolution of the total variation seminorm. a Brushing on ||f̂ ||TV and number of iterations, b cor-
responding scatterplot
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Fig. 9 for the image data). This is negligible. The ZNCC of f̂  is actually slightly 
smaller (by 0.04%) for #113,401 than #284,250 (see Fig.  10 for the image data). 
To visually assess the noise levels in #113,401 and #284,250, intensity profiles of 
interest are extracted. An intensity profile plots the intensity values along a line seg-
ment between to points of an image. They are shown in Fig. 16. The noise levels in 
#113,401 and #284,250 are very similar. We can, therefore, conclude that the extra 
11:23, after iteration #113,401, did not significantly improve the reconstruction.

We further exploited these results by introducing a new stopping criterion 
that looks at both the global fitness and TV. The global fitness is analysed over 
the last 500 iterations. Using simple linear regression, the fitness values are 

Fig. 15   Manual selection of a good candidate solution based total variation seminorm and duration. a 
Brushing on ||f̂ ||TV and number of iterations, b corresponding scatterplot. A ‘good’ candidate solution is 
circled in green (Color figure online)
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reduced to a single line, and the equation for it is extracted. When the slope is 
close to zero, the line is almost horizontal. It means that the global fitness has 
not changed much over the last 500 iterations. This process is repeated using the 
TV metric, again over the last 500 iterations. If the slope of both lines is below 
a given threshold, we deem the global fitness and TV to be stagnant. When stag-
nation occurs, the stopping criterion is met. To provide statistically meaningful 
results and due to the stochastic nature of the evolutionary algorithm, we perform 
10 evolutionary reconstructions with and without our new stopping criterion. We 
tested this approach using three controlled test cases (see Phantoms 1, 2, and 3 in 
Fig. 17), therefore running 60 reconstructions in all. Figure 17 shows the recon-
structed images corresponding to the median value of the total number of itera-
tions needed for each test case.

The performance, in terms of the total number of iterations needed, global fit-
ness, TV, and ZNCC between the reconstruction and ground-truth, is summarised 
in Table 3. The total number of iterations have been reduced by 68%, 67%, and 
58% on average for Phantom 1, 2 and 3 respectively. It did not lead to any loss 
of accuracy as the ZNCC between the reconstructions and the ground-truth has 

(a)

(b)

Fig. 16   Intensity profiles int the ground-truth and in the reconstructions presented in Fig. 10. a Intensity 
profiles corresponding to the red lines in Fig. 10, b intensity profiles corresponding to the green lines in 
Fig. 10 (Color figure online)
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marginally improved (by less than 0.5% for the three test cases). The TV metrics 
of the images reconstructed with and without the new stopping criterion are also 
consistent. We can conclude that the data exploration using visualisation has lead 
to a new stopping criterion that significantly reduces the computing time without 
any loss of accuracy.

Fig. 17   Reconstruction of Phantoms 1, 2, and 3 without and with the new stopping criterion. a Phan-
tom 1 without, b Phantom 1 with, c Phantom 2 without, d Phantom 2 with, e Phantom 3 without, f Phan-
tom 3 with
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8 � Conclusion

The research presented here relies heavily on a fully adaptive implementation of a 
CCEA based on the Fly Algorithm. The purpose of this algorithm is to optimise 
the location of 3-D points. The final set of points corresponds to the solution of the 
optimisation problem. We used this algorithm to solve a complex ill-posed inverse 
problem: tomography reconstruction in nuclear medicine. To date, the solution to 
the optimisation problem was extracted at the end of the evolutionary loop.

In this paper, we investigate the use of a simple but effective visualisation. It 
relies on Parallel Coordinate Plot, scatterplot and image display. The visualisation 
is used to explore the huge quantity of time series data generated by the algorithm 
during the optimisation loop. We focused, in particular, on metrics related to image 
accuracy, smoothness, and reconstruction time. We demonstrated that the final 
population may not be the most suitable solution and that preceding candidate solu-
tions have to be considered to ensure that the reconstruction is accurate and not too 
noisy. This was not trivial as smooth images may not be accurate. This investiga-
tion allowed us to demonstrate that increasing the population size, and hence the 
computation time, did not necessarily lead to a significant increase in quality of the 
reconstruction.

This approach can be easily deployed to any evolutionary algorithm (not only 
Parisian Evolution) where the quality of the solution cannot be measured by a 
single value (usually the fitness function). It is particularly suited to multi-objec-
tive optimisation where several concurrent fitness functions are used to assess the 
quality of an individual. All the objectives are equally important. Multi-objec-
tive optimisation algorithms often output a set of candidate solutions (the Pareto 
front). Choosing which solution is the best one may not be trivial. The decision 
maker with expert knowledge may be able to express preferences. An interactive 
visualisation similar to ours has the potential to help the decision maker decide 
which solution(s) to pick amongst the candidates proposed by the algorithm.

Table 3   Performance comparison between the algorithm with and without the new stopping criterion 
using 3 test cases

Each reconstruction has been performed 10 times

Phantom 1 Phantom 2 Phantom 3

Without # of iterations 282590 ± 989 276320 ± 18230 282820 ± 987

||Y − Ŷ||2
2

1.09E-03 ± 5.69E-05 1.46E-03 ± 6.83E-05 8.94E-04 ± 6.88E-05

||f̂ ||TV 1.34E-05 ± 1.43E-07 1.07E-05 ± 1.45E-07 1.60E-05 ± 1.62E-07

ZNCC(f , f̂ ) 93.23% ± 0.05% 94.34% ± 0.04% 92.59% ± 0.04%

With # of iterations 89190 ± 5880 90370 ± 14331 117450 ± 58705

||Y − Ŷ||2
2

1.32E-03 ± 5.95E-05 1.81E-03 ± 1.30E-04 1.04E-03 ± 9.98E-05

||f̂ ||TV 1.38E-05 ± 1.11E-07 1.13E-05 ± 2.06E-07 1.65E-05 ± 1.79E-07

ZNCC(f , f̂ ) 93.47% ± 0.05% 94.66% ± 0.07% 92.68% ± 0.06%
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We used these results to propose a new stopping criterion. It analyses the local 
variation in terms of global fitness and smoothness of the reconstructed image over 
the last 500  iterations. It allowed us to reduce the total number of iterations by 
almost 60% or more without any loss of accuracy.

Future work will initially include revisiting this new stopping criterion to validate 
it further to force an even earlier termination. We will also consider a third approach 
to combine visualisation and artificial evolution: interactive visualisation to steer the 
population in a particular area of the search space during the optimisation. The aim 
would be, again, to speed up the reconstruction process.
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viding some of the computing facilities used in this study.

Glossary

e−	� Electron
e+	� Positron
γ	� Photon
β+	� Positron
f	� Ground-truth (unknown radioactive concentration)
Y	� Observations (known input data, e.g. sinogram)
P	� System matrix/projection operator (it transforms the estimated radioactive 

concentration into simulated projections)
f̂ 	� Estimated radioactive concentration (point cloud or reconstructed image)
Ŷ 	� Projections simulated using the estimated radioactive concentration (sim-

ulated sinogram)
||Y − Ŷ||2

2
	��2-norm, also known as Euclidean distance, between Y and Ŷ

r̄	� Average pixel value of image r
�r	� Standard deviation of pixel values of image r
||f̂ ||TV	� Discrete total variation seminorm of f̂  , also known as TV-norm
∇(x, y)	� Gradient of a given image at pixel x, y
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