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Abstract

We use the Fly algorithm, an artificial evolution strategy, to reconstruct positron emission tomo-
graphy (PET) images. The algorithm iteratively optimises the position of 3D points. It eventually
produces a point cloud, which needs to be voxelised to produce volume data that can be used with
conventional medical image software. However, resulting voxel data is noisy. In our test case with
6,400 points the normalised cross-correlation (NCC) between the reference and the reconstruction is
85.53%; with 25,600 points it is 93.60%. This paper introduces a more robust 3D voxelisation method
based on implicit modelling using metaballs to overcome this limitation. With metaballs, the NCC with
6,400 points increases up to 92.21%; and up to 96.26% with 25,600 points.

ACM CCS: 1.3.8 Computer Graphics: Applications - medical; G.1.6 Mathematics of Computing: Global
optimization.

1 Introduction

PET reconstruction using the Fly Algorithm is an artificial evolution strategy and it follows the iterative
reconstruction paradigm. First, a random population of flies (3D points) is generated [2]. Each fly emulates
a radioactive emitter [3]. Genetic operators (here selection and mutation) are repeatedly applied to optimise
the position of flies. The aim is to minimise the discrepancies between the data simulated by the flies and
the input data from the scanner. The final concentration of flies will then be an estimate of the radioactive
concentration.

To date, the final population of flies has always been considered as a point cloud. We demonstrate below
that it is not the best representation to generate 3D voxel data.

2 Noisy reconstruction

Each good fly is kept in the final 3D volume. We considered a fly as a Dirac delta function (0): The value
of each voxel is incremented for each fly it contains. The stochastic nature of the algorithm leads to noisy
PET volumes (see Fig. . To limit noise, more flies can be used in the reconstruction (see Fig. . The
reconstruction time significantly increases.

Table 1: Normalised cross-correlation between the reference and reconstructed images.

Image: | Fig.|[l(a)| | Fig.|L(b)| | Fig.]4(a)l | Fig.|4(b)|
Method: Noisy Noisy Metaballs | Metaballs
Flies: 6,400 25,600 6,400 25,600
NCC: 85.53% 93.60% 92.21% 96.26%

NCC(f,t) = %zm

The reconstruction is then compared with the reference image (see Fig. . To quantify the similarities
between a reference f and a test image ¢, the normalized cross-correlation (NCC) is used:

(r(z,y) —7) (t=.y) - 1)
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(a)  Reconstruction with (b)  Reconstruction with
6,400 flies. 25,600 flies.

Figure 1: Standard voxelisation: Each fly corresponds to a ¢ function.
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Figure 2: Reference data (unknown).

with 7 the number of pixels, ¥ and ¢ the average values of f and ¢ respectively, o, and o; the standard
deviations of f and ¢ respectively. NCC(f,t) is equal to 100% when f and ¢ are fully correlated; it is 0%
when they are fully uncorrelated. Table [I] gives the NCC between Fig. 2| and the reconstructions. With
6,400 flies the NCC is 85.53%; with 25,600 flies it is 93.60%.

3 Density field

The aim of the fly algorithm is to estimate the radioactive concentration. As an output it produces a point
cloud. This point cloud can be described as a density field. Instead of the § function, an implicit function
(f(r)) is used: A fly corresponds to a particle surrounded by a density field. The influence of the particle
decreases with distance from the particle location. The final volume corresponds to:

Vi(z,y,2) = S50 iV (@ — )2+ (y — i) + (2 — 2)?)

with V the voxel value at the location (x,y, z), and (z;,y;, 2;) the i-th particle’s location. Metaballs are a
well known type of implicit modelling technique [I]. The density field can be modelled as:

a(l—?’b%z) Vr € [0;b/3]
filr) =9 32 (1-12) vr e [b/3;0]
0 otherwise

When two particles are close to each other, their density fields are combined in a smooth manner (see Fig. .
When they are far from each other, their density fields remain separated. Fig. [4] shows the reconstruction
results when implicit functions are used. The NCC with 6,400 flies is 92.21%; with 25,600 flies 96.26%.
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Figure 3: Illustration of density fields with two particles.
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a)  Reconstruction with (b)  Reconstruction with
6,400 flies. 25,600 flies.

Figure 4: New voxelisation: Each fly corresponds to a density field.

4 Conclusions

This poster focused on improving the voxel representation of PET images reconstructed using the Fly al-
gorithm without increasing the computation time. The figures above show a significant improvement when
implicit modelling is used. In our tests, 25,600 flies were initially needed to get a NCC value over 90%. With
implicit modelling, only 6,400 flies produce comparable results.
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Figure 5: Poster presented at Eurographics Workshop on Visual Computing for Biology and Medicine,
Chester, UK, May 14-15, 2015.
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