4 3 UNIVERSITY OF
School of Computing and Mathematics EESSID
MSc Computer Aided Graphical Technology Applications

Franck Vidal

Constructing a GUI using 3D reconstruction for a radiographer’s
training tool

Submitted in partial requirements for the degree of MSc CAGTA
Sept 2002

Supervisor: Mr. S Keswani
Second Reader: Dr.J Warren

4 3 UNIVERSITY OF
School of Computing and Mathematics EESSID
MSc Computer Aided Graphical Technology Applications

Franck Vidal

Constructing a GUI using 3D reconstruction for a radiographer’s
training tool

Submitted in partial requirements for the degree of MSc CAGTA
Sept 2002

Supervisor: Mr. S Keswani
Second Reader: Dr.J Warren

Interim Report

ACKNOWLEDGMENTS

I would like to thank Mr. Suresh Keswani of the School of Computing and Mathematics at the
University of Teesside for his expertise. I would also like to thank the Senior Lecturer, Philip
Cosson, of the School of Health at the University of Teesside, for suggesting this medical
imaging project and supporting its development. I am grateful to Christian Girard of the
Digital Imaging Unit of the University Hospital of Geneva for his assistance in my research
and the use of his Papyrus toolkit. I would also like to thank the staff of the Newcastle
General Hospital (NGH)for dealing with CT datasets and the radiography team of the South
Cleveland hospital for showing how X-rays are taken. I would also like to thank Daniel
Deprez for working on the companion project (the X-ray renderer) and his tutor, Julian
Warren, for his participation in the project. I would also thanks Shona Davie for the proof-

reading.

1ii

Interim Report

Abstract

Family Name VIDAL

First Name(s) FRANCK

E-mail Address | vidal.franck@uvoila.fr

Supervisor KESWANI S

Second Reader WARREN J

Course MSc Computer-Aided Graphical Technology Application

Title Constructing a GUI' using 3D reconstruction for a

radiographer’s training tool

Abstract

This project presents the GUI for a radiographers training tool. It is one of the
two parts of a project idea proposed by Senior Lecturer, Philip Cosson, from the
School of Health at the University of Teesside. His wish was to develop a
program, which would allow students to train themselves to take X-Ray images
without exposing patients to X-rays. It has been divided into two different

projects, the GUI and the X-Ray rendering.

There are two parts to the GUI system, a 3D reconstruction and the setting of
the radiography parameters via the GUI. Volumetric data, obtained by MR? or
CT? scanners, is stored, slice by slice, in a DICOM file, the medical imaging
file standard. The Papyrus toolkit, developed at the University Hospital of
Geneva, i1s used to read DICOMDIR files and DICOM files, which contain
medical images. Before 3D reconstruction, information is extracted and a
segmentation algorithm detects bones and skin on the different images of the
dataset. From these data and using the marching cube algorithm, a 3D model is

created.

The GUI lets users select different datasets. Users can set the position and the
orientation of the 3D reconstructed objects. They are able to choose the
corresponding cassette and to move the X-Ray source. The GUI communicates,
via an agreed protocol, all settings of the scene to the other part of the project,
the X-Ray renderer. The GUI project is written in C++ using the WIN32 API
and OpenGL.

! Graphical User Interface
? Magnetic resonance
* Computed Tomography

4 Digital Imaging and Communications in Medicine

v

Interim Report

CONTENTS

INTRODUCGTION. ...ttt ettt ettt e et e et e et eesateeesnbeeenseesneeesnseeeanseeenneeeans 7
CHAPTER 1 - Background of the projecteeeiiiiiiiiiiiiiiiiiee ettt ee e e 8
CHAPTER 2 - PIeVIOUS WOTKSueiiiiiiiiiiieiiiiieee ettt ettt e e e ee e 10
2 B) (0101 (AN = USSR 10
2.2 DICOM FIlES VIEWETSeeeeiutiieeiiiiiteeeiiteee e ettt e e ettt e e ettt e e ettt e e e st e e e saabeeeesebaeeeeaans 11
2.3 3D RECONSEIUCHION ..ceiiiieeiiiiiie ettt ettt ettt e ettt e e ettt e e ettt e e s eabee e e s eateeeeaans 11
2.4 X-RaY SIMUIALOTS.eiiiiiiiiiiiiiiiiieee e e ettt e e e e eeitreeeeeeeeeeitbbaeeeeeeesssseenraseeeaesessnnnes 12
CHAPTER 3 - Research into algorithms for surface reconstruction..............ccccuvvvveeeeeeeennnnns 13
3.1 Marching CUDE [1] .ocoouuiiieiiiiiee ettt e et e e et e e e e eabe e e e eetbeeeeeeareaaeenes 13
3.2 Marching tetrahedron [2].........ooiiiiiiiiiiiie ettt e eir e e etb e e e e eiveaeeeaes 17
3.3 Laplacian SmOOthing [3]uueiiiiiiiiiiiiiiiiie ettt e et e e e e e e sirre e e e e e e e e eaeens 18
3.4 Decimation of triangle MeShes [4]uvviiiiiieiieiiiieeiee et e e e e e e 18
3.5 Octree-Based Decimation [5].....cccceieeiiiiiiiiieeeeiiiiiieeee e ettt e e e e e et e e e e e e e e 19
CHAPTER 4 - X-TaY 1MAZES ..eeeeeeiiriiiiieeeeeeiiiiiireeeeeeeeesietrreeeeesessssssssssseesessssssssssseeeasessssnns 21
N B 5 1 o) SRS UPPPPPRRN 21
4.2 Other tECRNIGUES.uviiiieieiiiiiiiieee ettt e e e ettt e e e e e e stbbaeeeeeee e e nenraaeeeeesesnnnns 22
CHAPTER 5 - Reading dataset............cceeeieeeiiiiiiiiiieeeeiiiiiieeeeeeeeeiiitaeeeeeeesessenvaeeeeaeesensnnns 24
5.1 The DICOM Standardoeeiiiiiieiiiiie ettt 24
5.1.1 Before the DICOM standard............cccceeiiiiiiiiiniiiie et 24
5.1.2 ACR-NEMA standard to DICOM standard............cccceeveiiieniieeiiieeiieeiee e 24

I B) (00 1LY 1 1RSSR 25
5.3 DICOMIR fII€S.....eeiuiieeiiieeiie ettt ettt e et e ettt e et e et eeeneeesnseeeemseeennneeenneeas 25
5.4 IMPIEMENtAtION ISSUES ...cuvvvvviiiieeeeeeiiiiiiiteeeeeeeeeitbreeeeeeeeesseerrreeeeeessssssssreseeaeesasnsnns 26
CHAPTER 6 - 3d reconstruction — Implementation iSSUEScccccvvrrereeeeeericiiiieeeeeeeesnenns 28
6.1 IMAZE PrOCESSINE . ..ueeiieeeeeeiiiiriieeeeeeeeiiitrreteeeeeeesiearrreeeeaeeesssssssssseeeesesssssssseseeesessansnnns 28
6.1.1 Se@MENLALION......uuviiiiiieeeeiieiiiieeeeeeeeeriireeeeeeeeesitbrrreeeeeesessersreeeeeesessnsssssenees 28
6.1.2 Removing little artefactS...........eeiviiiiiiiiiiiiiiiiee e e e 30

6.2 3D Reconstruction using Marching Cube.............ccccveiiiiiiiiiiiiiieee e 33
6.2.1 Why the marching-Cube...........ccccveiiiiiiiiiiiiiiie e et 33
6.2.2 Reconstruction of the surface of the 3D objectcccvveiiviiiiiiiiiiieeciieeee, 33
6.2.3 OPLMISALIONSvvvvvriereeeeeiiiiiiieeeeeeeeeesiitrreeeeeeessssesrrsrreeeeesssssssnsssseeeesessssssssssees 37
6.2.4 Reducing the LOD.......cooooiiiiiiiee ettt e e e e e e e seeraaees 40

6.3 NOTMAL ..ttt ettt e e ettt e e s ettt e e s eabe e e e e eneeeeeaaa 42
0.4 TEXIUTIIZeeeieeiiiiieeeeeeeeeecitt et e e e e e eeeeettbreeeeeeeeessstrbaeeeeaeeessassssssssaaasssassssssrsseeaeesennnnns 44
CHAPTER 7 - Graphical User INterfacec.c.vveeiiieeiiiiiiiiiiiie et eeireeee e e 45

Interim Report

7.1 GUI AICRITECTUIE ..ot iitieeeeeiiite ettt ettt et e ettt e e sttt e e s e ieeeeeeaes 45
7.2 Setting the 3D reCONSTIUCTIONcciiiiiiiiiiiiieeeeeeeciiteee e e e e e e eirrree e e e e e e eseerrreeeeaeeeeennnnns 46
7.2.1 Setting the segmentation PAramEtersceeeeerecvrireereeeeeiriiiireeeeeeeeesserrneees 46
7.2.2 Reducing the 3D object’s 10ading time...........ccevvvieeeiiiiieeeeiieie e eeireee e, 46

7.3 Getting ProportioNal SIZESeeeieeieeciuiiiiiieeeeeeeiciiieeeeeeeeeseirtreeeeeeeessesrrrereeeeesassnnnns 47
7.4 Setting positions and OriENtAtIONS..........uuveeiieeeeeriiiiirieeeeeeeeriirrreeeeeeeseseerrreeeeeeeesssssnns 48
7.4.1 Cassette and PAtICNLS.......ccccvvririeieeeeeiiciiiereeeeeeeeeirrreeeeeeeeeseerrreeeeeeeessnsnssenees 49
7.4.2 X-TAY DEAIMN SOUICES ...vveeeiurriieeeieireeeeiireeeeeitireeeestreeeeeserseeesssreeeesssseeesssssenaeses 49

7.5 The link between the GUI and the X-Ray renderer.............ccoeevvvieeiiiiieeiiiieececiieeeens 50
CHAPTER 8 - Program implementation deSigIl............cccvereeiiuiieeeiiiiiieeeiiieeeeseiveeeeesiveeeeenns 51
I € 115 721 B B o] Ty DU PP RPUR 51
8.2 ClasSes AN LIDTATIESeeerueieeiieeeiieeeiie et e et eeteeeeteeetee e et e e sateeeneeesteeesnseeeneeeens 52
8.3 Coding Standard...........ccuvviiiiiiiieiiiiiieeee e e e e e e e e e e e e s eearraees 53
B4 JAVAAOC ...eeeneiieeiee ettt ettt ettt et e et e e te e e ntee e nteeeteeeenteeeanaeeens 54
CHAPTER 9 = USEIS’ tESESvtteeiiiiieeeiiiieeeeitteee ettt e e ettt e e s st e e e sttt e e s sibteessabbeeeesbeeeeeaans 55
9.1 USEI’S POINE OF VIEW 1oeeieeiiiiiiiiiiee e ettt e e e e e ettt e e e e e e e eiittrreeeeeeseesnsnrsraeeeaaesssnnnnns 55
9.1.1 Radiography StUdents.............oueeiieiiiiiiiiiiiiiiee et e e e e e seearaeeeas 55
9.1.2 Students using 3D PaCKALES......cccceeeeiiciiiiiiiiie et 56
9.1.3 Computer users without 3D knowledge............cccevrriiiiiiiiiiiiciiiiieee e, 56

9.2 MY OWN POINE OF VIBW ...ueiiiiiiiiiieieeeciiiiieee e e e e e ettt e e e e e e esaeitrreeeeeeessennsnnsseseeaeeessnnnnns 57
(010N G 510133 [) USSR 58
REFERENCES ... ettt ettt ettt ettt e et e e st e et e eesteeeaseeeenseeeneeas 61
APPENDIX A — DICOM fIl€ @XtIaCtuveiieiiiiiieeiiiiiieeeiitee ettt et e e 63
APPENDIX B - IMage PrOCESSINGuvvvviiiirieeeeeiiiiiiiieeeeeeeesiiirreeeeeeeeesssrrseeeeeeeesssssssseseeaeeens 64
APPENDIX C — WINAOWSceeiiieiiiieeiie ettt ete et e et e et e stee et eesseeeenseeesnseesneeas 65
APPENDIX D — X-Ray GUI file format..........ccccoviiiiiiiieiiiiiiieee et eeeireeee e 66
APPENDIX E — Use of the command line argumentsccceeeeveuvieeeiiinieeeesnreeeescineeeennns 68
APPENDIX F = JaVAAOC ..eeiiiiiiiiiiiiie ettt ettt e e 71
APPENDIX G — Test sSupport Materialsccceeuvvriiiieeeeiiiiiiieeee e e eee e e e eirrreeeee e 73

Interim Report

INTRODUCTION

My project was proposed by the senior lecturer, Philip Cosson, of the School of Health &
Social Care at the University of Teesside. He wished to have a training program for students
in radiology. This product should allow students to simulate taking X-Rays without exposing
patients to X-Ray beams. His initial project was divided into two different projects because
of its size. This project is the creation of the GUI of the tool and the other project, which was

produced by Daniel Deprez, was the X-Ray renderer.

The purpose of the interface is to allow the user to select the dataset for the training and then
to set all radiography parameters, such as the patient position and the cassette, as in real
conditions. For such training, users could select an actual dataset created by a medical
scanner. The 3D objects are reconstructed from this dataset using the marching-cubes
algorithm and they are used as part of the actual GUI. Image processing algorithms are
applied to the obtained slices before reconstructing 3D objects. The rest of the GUI allows
the user to set the position and the orientation of the 3D objects, the X-Ray source and other
radiography parameters. This information is then sent to the companion project, which

simulates the X-ray rendered images.

Interim Report

CHAPTER 1 - BACKGROUND OF THE PROJECT

The senior lecturer Philip Cosson, who specializes in medical imaging and diagnostic
radiography, would like to have a X-Ray simulation program to allow students to train
themselves to take X-Ray images without exposing patients to X-Ray beams. It is an
important project in terms of working time. It was decided that this project would be divided

into two different projects.

The X-ray simulation consists of a volumetric rendering. The simulator program has to
consider physical parameters of X-ray and the position and orientation of each element that

constitutes the 3D environment.

There are three main elements in the 3D scene; the patient, the X-ray source and the cassette.
They have some properties, such as orientation and position. The GUI program sets up this
information. It lets users select a dataset and set the scene as they want. The GUI calls the
companion program, which displays the simulated final rendering. The GUI is divided into
four parts; the first opens a dataset, the second is the reconstruction of two 3D objects, a skin
model and a bones model. The third step is the setting of the 3D space and the last is the call
of the rendering program. The simulator has been created by Daniel Deprez and the GUI by
Franck Vidal, the author of this report.

Before starting the projects, a series of meetings were organized between everyone concerned
in the project suggested by Philip Cosson. It was the starting point of the project. Philip’s
requirements were explained, the required and available data were defined. Some ideas were
born, such as the use of a VR’ device like a 3D mouse (a pen with a sphere) and the use of a

grid for setting the position of the 3D objects.

The data available is of medical images of a phantom of a foot, obtained by a CT scanner at
the Newcastle General Hospital (NGH). This hospital had scanned another object, a bucket
with water, but a problem between different services of the hospital cancelled the obtaining of

this dataset.

Philip Cosson had suggested a visit to the hospital to see how CT datasets are taken. This
visit to the Newcastle hospital was cancelled, but another one was organized. This time it

was to see how to perform real radiography. Cleveland South Hospital welcomed Daniel and

> Virtual Reality

Interim Report

me for a few hours to show us how to take X-Ray images. It was an opportunity to
manipulate an actual X-Ray device. This visit was a useful experience because I could see
what I was attempting to simulate and receive some ideas for the GUI. Using the same kind
of buttons as the real device, would be an ideal method to simulate the process of taking X-

Rays.

Interim Report

CHAPTER 2 - PREVIOUS WORKS

Before starting any implementation, other medical imaging programs were studied. My
purpose was to discover what kind of results were obtained and what kind of interface was
used. They were tested for positive and negative points. By critically appraising the

programs’ aspects, positive ideas may be used in the program.

At the beginning of the project, the phantom was scanned but the data was not burned on a
CD because of problems between different services of the Newcastle hospital. At the
beginning, the main activity was to research DICOM files as the loading of images from this
kind of image files is necessary. As some Open Source DICOM files readers have already

been implemented, these were searched for on the web.

By seeking and testing medical imaging programs, four different kinds of programs were
defined; DICOM API, Medical image file viewers (with image processing), 3D reconstruction
tools and X-Ray image renderers. As the purpose of the GUI is to send the companion

program parameters to receive X-Ray images, X-Rays simulators were also sought.

2.1 DICOM API

As the purpose of the project is the creation of an interface, using 3D reconstruction, work
was focalised on these two aspects, the interface and the reconstruction but images had to be
read from standard medical image files. Using an existing library was preferred, rather than
creating one, to allow more time to be spent on the main purpose of the project. Only two
different libraries have been referenced; the Papyrus toolkit [6] and the Dicom3Tools [7]. As
the program has to work under MS Windows, the Papyrus toolkit has been chosen because

the other one only works in a Unix or a Mac environment.

Historically, the Papyrus toolkit is not based on part 10 of the DICOM version 3 standard,
which defines DICOM files format. The Papyrus toolkit is anterior to version 3 of DICOM.
It was created in 1990, when there was no medical image file format standard. The Papyrus
toolkit defines a file format based on the data dictionary and data structure of the
ACR/NEMA 2.0 communication standard (there is no concept of file format in this standard,
the ARC/NEMA communication standard is the base of the DICOM standard). This file
format responded to a need for an image storage and communication format. Later, the
DICOM standard was born with its own file format. The Papyrus toolkit has evolved to have
compatibility between Papyrus file and DICOM file. The toolkit can read both formats.

10

Interim Report

2.2 DICOM FILES VIEWERS

A good way to read images and to check the validity of the read data, was to read images
from DICOM files and compare the result with other Medical image viewers, such as
ezDicom [8], Osiris [9] and Rubo Medical Imaging [10]. These three programs were used

during the implementation of the project. All of them have their advantages:

ezDicom is fast, it allows the user to change the contrast and the luminosity by
clicking on the image. It shows the value of the pixel under the mouse pointer. This
point is useful for seeing the result of a pixel value of a greyscale image encoded into
a 16 bit colour depth (nowadays, computer monitors are not able to display more than

256 different greys).

The Osiris software lets users manipulate the dataset structure. The hierarchy of
DICOMDIR files is shown. It is an interesting tool, because this program can be used
as a Papyrus and DICOM file browser, which is very useful when images of a dataset
have to be manipulated. As it has been created by the same team that created the
Papyrus toolkit, the program is based on Papyrus. It is an example of what the
Papyrus toolkit is able to do.

Rubo Medical Imaging shows and sorts all information contained in DICOM files. It
is useful for checking particular record values when the new program reads DICOM
files. It allows for the comparison of results obtained by this new program with

results obtained by the Rubo Medical Imaging tool.

Another interesting program is Hipax [11]. It is a complete medical imaging
manipulation tool. It can be used as a basic image viewer or complex image

processing on a single computer; or on a larger network for PACS® solutions.

2.3 3D RECONSTRUCTION

Medicview 3D [12] is a program which can reconstruct 3D objects from medical images.
There are two different kinds of rendering. The default 3D rendering uses a classical 3D
object composed of triangles; this object seems to be reconstructed by a marching-cubes
algorithm. The second method displays a 3D texture. The pre-calculation of the first method

is longer than with the second, but, manipulation of the object is faster with the first method.

8 picture archiving and communication systems

11

Interim Report

The most important weakness of this program is the difficulty of setting the orientation of the

object in the space; rotations are not easy to manipulate.

2.4 X-RAY SIMULATORS

This project is not the only X-ray simulator that exists. Similar projects have been found.

The University of Umea , Sweden, has developed Virtual Radiography [13]. It is a tool to
improve the learning experience of dental students in intra-oral radiography. Similar to this
project, the 3D world is composed of the X-ray emitter, the patient and the X-ray detector.
These can be moved. The manipulation of the objects can be done with the mouse, a

spaceball or using a six degree- of-freedom tracker system.

The purpose of the second project, SimXray, is to train students to take X-Rays without
exposing patients and themselves to radiation. It is named SimXray [14]. It simulates an X-
Ray image, using all parameters of radiography, as in a real-life situation. Users have to
select examinations from a list and configure the X-Ray machine parameters. They can

compare their results with a perfect X-Ray image.

The third project is not an X-Ray simulator, but it creates a virtual radiation laboratory [15]
(X-Rays are radiations). Working with radiation is dangerous. People who work in such
environments have to train themselves to detect all radiation sources, because the dangers are
not always visible. This project is a VR trainer to teach users how to detect radiation sources.

The user is placed in a laboratory setting with a certain number of sources in the room.

12

Interim Report

CHAPTER 3 - RESEARCH INTO ALGORITHMS FOR
SURFACE RECONSTRUCTION

For creating my own medical imaging program, I have to know what algorithms are usually

used for particular tasks in other medical programs.

One aspect of the project is the reconstruction of 3D objects from volumetric data. This
version is formed by multiple 2D slices of computed tomography or magnetic resonance
image data. Two possibilities were offered to display the object in 3D. The first uses voxels
directly to perform a volumetric rendering as a 3D texture. The second was to produce an
isosurface mesh’. The first method needs to store all slices in memory, as it is a 3D texture.
The rendering is slow and uses a lot of memory. The second requires commonly used 3D

objects represented by faces of three vertices.

One of the tested programs, MedicView 3D, displays and manipulates a 3D volume (a head)
in the space, using those two methods. One is very fast when compared to the other one. The
method of isosurface extraction was implemented because the manipulation of such 3D

objects can be achieved quickly in real time.

3.1 MARCHING CUBE [1]

This is an algorithm, which appeared in an article, in SIGGRAPH, written by W. E.
Lorensen and H. E. Cline in 1987. The algorithm processes the 3D data in scan-line order

and calculates triangle vertices using linear interpolation.

Marching cube locates the surface in a logical cube created from four pixels of a slice and
four pixels of the adjacent slice (Figure 1). The algorithm determines how the surface, stored
in the 3D data, intersects this cube, then it moves (or marches) to the next cube. Commonly,
a byte is used to store the vertices’ cube description. The convention used is to put a one to a
cube vertex, if the data value at this vertex exceeds or equals the isovalue of the surface that is
being constructed. Such vertices are on or inside the surface. Other cube vertices get a zero,
because they are outside the surface. Cube edges are intersected by the surface when there

are vertices inside and outside the surface.

7 collection of triangles in 3D, joined along common edges and vertices

13

Interim Report

Slice k + 1 /

A

1, k1)

(i,j k+1)

/ﬁ‘/H ial Jéll
L

[i+1.],b41)
H

Ve

{i+1,j+

/ /{i,j+)
o

Figure 1. Marching Cube.

27

pixal

(Picture from the Lorensen and H. E. Cline’s article in SIGGRAPH 87)

A cube has eight vertices. Those vertices can have two states, one or zero. There are only 8

= 256 different cubes. A lookup table is created by listing all different cases. It contains the

edges intersected for each case. Two different symmetries reduce the problem to 14 patterns

(Figure 2). Symmetry of states reduces to 128 possibilities. The second symmetry is done by

rotation and reduces to 14 different possibilities. For each possibility, there is only one

possible tessellation. Per cube,

there can be 0 to 4 triangles.

14

Interim Report

| 2
3
o pr—f—————. |
\
5
LN -] oy
. . 5
o =
k —— %
| b II o
! " I-'I
" .
' S
Y ~- 10 -
L i
S B fl 7 %, | _,/ _\:\
" _. | L . i P
Fd - F4 [A/ (f / -
e S / | | ! | b A / ‘
P { { I i i i
5 II' I|' Ira | ._,.' i |
,'z 4 - b ‘ ‘ |-~
e * ~1
] x
12 .
= 13 = 14 —
—r— Y. M A
f I.I f [T I: .
.l'I ,"I I'l |'I I' .‘:’z
A P \'\. | _//
// 5, Vo
il % A Fd
e
Figure 2. Base Patterns.
The index

An index, based on the vertices’ states, is created for each case (Figure 3).
contains one bit per vertex. As there are eight vertices, which can have two states, just a byte

is required to stock the description of cube vertices. The created cube is used as a pointer to

an edge table, which indicates all edge intersections.

Interim Report

v CT Y/
ell / 312/
c8 e3 ebh
v V3
v €3 vh
ed / e2 /
i
2 el0

y
z

2 o

vl el = Lx

index = ‘v8|v?|v6‘v5|v4‘v3|v2|vl‘

Figure 3. Index specified in the Lorensen and H. E. Cline’s original article

For using such reconstructed 3D objects in a scene with lights, the normal at each vertex has
to be calculated. The gradient vector is normal to the surface; it is this normalized vector, ‘g’

that is used.
This algorithm presents some problems, such as the high number of faces. It is now an old

method, but it is still used for extracting isosurfaces. It is always used because the

optimisation and mechanical aspects of the algorithm make it fast.

16

Interim Report

3.2 MARCHING TETRAHEDRON [2]

It is also possible to find the marching tetrahedron algorithm named the tetra-cubes algorithm.
It is a similar technique to the marching cubes. Tetrahedral cells replace cubes. As there are
only 4 vertices, there are just 2* = 16 ways a tetrahedron can intersect a surface: it is less
complex than marching cubes. It is simpler to implement, but the execution is slower and the
isosurface extraction is less accurate (Figures 4-5). This is why it is possible to find some
programs with the marching-tetrahedron and without marching-cube, or without marching-
tetrahedron and with marching-cube. In fact, it just depends on the priority required; an
algorithm that is fast to write and slow to execute, with a poor quality reconstruction, or an
algorithm that takes a bit longer to write, but is faster to execute with a better quality of
reconstruction. As this project is a student work without financial or commercial
considerations, privileging quality over development time was preferred. The marching-cube,

therefore, was used rather than the marching-tetrahedron.

Figure 4. Marching Cube Figure 5. Marching Tetrahedron

(The same object has been reconstructed using the same resolution with two different
algorithms using Cory Bloyd’s Marching Cubes example program [17] found on Paul
Bourke’s web site[16])

17

Interim Report

3.3 LAPLACIAN SMOOTHING ([3]

Laplacian smoothing is the most commonly used and the simplest mesh smoothing method.
The original method adjusts the location of each mesh vertex to the geometric centre of its

neighbouring vertices

The method, proposed by Vollmer, Mencl and Miiller, is an enhanced technique of Laplacian
smoothing that avoids the problems of deformations and shrinkage. The basic idea is to push

the vertices of the smoothed mesh back towards their previous locations.

3.4 DECIMATION OF TRIANGLE MESHES [4]

Schmede’s decimation method principle is quite simple. Figures 6-9 show their result, which
was published in 1992 in the Siggraph. Multiple passes are made over all vertices in the
mesh. During a pass, each vertex is a candidate for removal and, if it meets the specified
decimation criteria, the vertex and all triangles that use the vertex are deleted. The resulting
hole in the mesh is patched by forming a local triangulation. The vertex removal process
repeats, with possible adjustment of the decimation criteria, until some termination condition
is met. Usually the termination criterion is specified as a percentage reduction of the original
mesh (or equivalent), or as some maximum decimation value. The three steps of the

algorithm are:
1. characterize the local vertex geometry and topology,

2 evaluate the decimation criteria

3. triangulate the resulting hole.

18

Interim Report

Figure 6. Full resolution (569k Gouraud shaded Figure 7. 75% decimated (142k Gouraud
triangles). shaded triangles).

Figure 8. 75% decimated (142k flat shaded Figure 9. 90% decimated (57k flat shaded
triangles). triangles).

(These pictures come from the article published in the Siggraph 1992 [4])

3.5 OCTREE-BASED DECIMATION ([5]

As reconstruction algorithms produce models containing a large number of triangles, it can be
interesting to use a reconstruction algorithm followed by a decimation method. Raj
Shekharly, Elias Fayyad, Roni Yage and J. Fredrick Cornhill, in 1996, proposed a decimation
method. Its main purpose is to reduce the number of triangles in meshes. Reduced mesh
needs to preserve the topology of the original mesh and to be a good approximation of the

original mesh.
To represent an isosurface, the marching-cubes algorithm generates a large number of

triangles. Many triangles increase the rendering time. An Octree-based decimation algorithm

can reduce the number of triangles generated by the marching cube algorithm. This algorithm

19

Interim Report

is an enhanced implementation of the marching-cubes algorithm. The decimation is
performed before creating a large number of triangles. This new implementation is composed
of four main steps: surface tracking, merging, crack patching and triangulation. The principle
of the surface tracker is to start from a seed point, then to visit only the cells that are likely to
compose part of the desired isosurface. This results in approximately 80% of computational
saving. The cells making up the extracted surface are stored in an octree that is further

processed. Triangles of an approximated flat surface are merged.

20

Interim Report

CHAPTER 4 - X-RAY IMAGES

4.1 HISTORY

The German Wilhelm Conrad Rontgen [18] discovered X-Rays in 1895. They are an
electromagnetic radiation, emitted when matter is bombarded with fast electrons. They have
a shorter wavelength than ultra-violet radiation. UV wavelenghs are about 10 metres. They
extend to indefinitely short wavelengths, but below about 10™"" metres they are called gamma
radiation. X-Rays can cross the human body. They are stopped by certain structures, such as
bones, which stop X-Rays more than soft tissues. After revealing bones (Figure 10), Rontgen
got the Nobel price in 1901 for the discovery of X-Rays. Since then, X-Ray images have

been used in medicine as a diagnostic aid for parts of the body, such as bone.

Figure 10 Picture known as the first X-Rays image of bone (1900)

(This famous image was found on a web site dedicated to X-Ray discovery, at the following
URL [18], http://www.xray.hmc.psu.edu/rci/ss1/ss1_2.html)

21

Interim Report

4.2 OTHER TECHNIQUES

Three different elements interact when a radiographer takes a traditional X-Ray image. They
are: the X-Ray beam’s source (or X-Ray emitter), the patient and the cassette (or X-Ray
detector). X-Ray beams cross the patient and hit the cassette. The GUI has to allow users to
set such a 3D virtual world. They print X-Ray images on a photographic film.

For this project, volumetric dataset are needed to get 3D models. Two main techniques allow

3D information of a part of a body to be obtained.

The first discovered, was created in 1970s[24]. It is the CT scanner, Computed Tomography
scanner. An X-ray tube, rotating around a specific area of the body, delivers an appropriate
amount of X radiation for the tissue being studied and takes pictures of that part of the
internal anatomy from different angles. The raw signal does not form an image, a computer

program is then used to form a composite, readable image.

The second technique appears in 1980[25]. It is the MR scanners. It uses the Nuclear
Magnetic Resonance property. It is more recent than CT scanner, but more expensive. It
produces cross-sectional images of organs and other internal body structures. The patient lies
inside a large, hollow cylinder containing a strong electromagnet, which causes the nuclei of
certain atoms in the body (especially those of hydrogen) to align magnetically. The patient is
then subjected to radio waves, which cause the aligned nuclei to “flip” ; when the radio waves
are withdrawn, the nuclei return to their original positions, emitting radio waves that are then

detected by a receiver and translated into a two-dimensional picture by computer.

These two methods get 2D slices of a body. It can be considered as a 3D texture. The
datasets resulting from both kinds of scanners can be used for 3D reconstructions. This
project only used data obtained by CT scanners because it uses X-Ray radiations. The
segmentation used in the program needs further improvement to be used with MR data. Both

scanners obtain data using a spiral direction (Figure 11).

22

Interim Report

Slices

Figure 11. Scanners' moves

The MR and CT scanners
move in space following a
spiral. The move is in 3D.
The resulting slices are not
perfectly parallel because of
the spiral move. They are a
bit deformed, this fact is
ignored during the 3D
reconstruction because the
deformation is not visible on
the final 3D objects.

23

Interim Report

CHAPTER 5 - READING DATASET

The data needed for reconstructing 3D objects is a volumetric dataset. CT and MR scanners

acquire a succession of 2D images and are able to store them into files.

5.1 THE DICOM STANDARD

The DICOM files standard is the current standard for such medical image files.

5.1.1

Before the DICOM standard

In the late 1970s, the American College of Radiology (ACR) and the National
Electrical Manufacturers Association (NEMA) needed a standard method for
transferring images and associated information between devices manufactured by
various makers. Moreover, these devices produce a variety of digital image formats.
In 1983 these two organisations created a common committee (ARC-NEMA
committee) to develop a standard to allow communication of digital image, regardless
of device manufacturer; to develop the picture archiving and communication systems
(PACS); and to create databases for diagnostics. In 1985, the first version of the
ARC-NEMA standard was published, followed in 1988 by a second version.

ACR-NEMA standard to DICOM standard

The DICOM standard wants to be a general communication standard. It was done to
conciliate the needs of manufacturers and users of medical imaging equipment for
interconnection of devices by standard networks. The most important change from
the ARC-NEMA standard to the DICOM standard is that data are no longer
transferred without links between them. The DICOM standard uses a programming
concept, the object oriented concept. Relationships between data are explicitly stated;
this model is named E-R®. This new data structure is better than the previous because

it shows the data items of a given scenario and how these items interact.

¥ entity-relationship

24

Interim Report

5.2 DICOM FILE

The last version of DICOM, the V3.0, gives enhancements to previous versions. Some of

them are major improvements.

It is useable in a network. It supports a network environment using OSI and TCP/IP

protocols. Previously, only point-to-point environments were managed.

It is structured as a document with several parts. Like a document, the standard can be
enhanced in an environment that can evolve rapidly. ISO’ directives, which define how to

structure multi-part documents, have been followed in the DICOM Standard.

The most important improvement of the standard for this project, is the notion of a real file
format. It appeared with the third version of the standard. A DICOM file (Appendix A) is a
file with a content formatted according to the requirements of Part 10 of the DICOM
Standard. In particular, such files should contain the File Meta Information and a properly

formatted Data Set. Such files can contain one or several images.

5.3 DICOMIR FILES

Version 3 of DICOM deals with another kind of file; the DICOMDIR file format. It is a
unique and mandatory DICOM file within a file-set which contains the Media Storage
Directory SOP Class. This file is given a single component file ID, DICOMDIR (Files are
identified by a File ID which is unique within the context of the file-set they belong to). In
other words, the DICOMDIR files contain hierarchical information. ‘DIR’ of the
DICOMDIR word means ‘DIRectory’. Dataset information relating to patients, studies and
series are stored in such files. A dataset can concern several patients. Each patient can have
more than one study. A study can contain several series. A series is constituted by DICOM
files ID. The figure 12 presents the tree description of DICOMDIR files.

? International Standards Organization

25

Interim Report

Patient 0 Study 0 Series 0 DICOM file ID 0

*DICOM file ID g

Series p

Study o

Patient m

Patient n

Figure 12 DICOMDIR file architecture

The dataset used during the whole development of the project is constituted by a DICOMDIR
file and DICOM files containing only one image. The dataset stores information about only

one patient, UOT FOOT. The patient has one study of six series.

5.4 IMPLEMENTATION ISSUES

It is not images of this dataset that have been used for the first attempt of getting images from
DICOM files, because the dataset was not available at the beginning of the project. Web sites
provide DICOM files for downloading. It has allowed me to test different kind of images;
there were colour or grey scale images, lossy or not compressed data, 16 bits or 8 bits

encoding.

A C++ library, named DiLib (“DI” for DICOM and “LIB” for library) is implemented to read
and manage DICOM and DICOMDIR. It is written in C++ on the top of the Papyrus toolkit,
because both file formats need the same Papyrus functions. Figure 13 shows the architecture

of the library implemented to manage datasets using DICOM and DICOMDIR files.

26

Interim Report

Papyrus Toolkit API

L A

class DiFile

W i

class DiDicomFile class DiDicomdirFile

a
i

class DiDataset A > B > C

B uses functions of A
C inherites from B

Figure 13 DiLib architecture

27

Interim Report

CHAPTER 6 - 3D RECONSTRUCTION —

IMPLEMENTATION ISSUES

6.1 IMAGE PROCESSING

6.1.1

Segmentation

Before creating any 3D surfaces and volume meshes from CT images, an algorithm
has to determine the nature of each pixel. The purpose of the image segmentation for
medical imaging applications is the construction of a series of regions usually called
ROI'’. For this project, a pixel can represented skin, bones, air or tissue. Another
range of pixel values has to be managed. Scanners produce circle images. An image
is stored in file as a rectangle. To obtain a rectangle from a circle, each corner is
filled by a unique value, named ‘Padding value’. Pixels corresponding to the padding
value are replaced by black pixel value, 0. As the program uses the Marching-cube
algorithm, the segmentation algorithm has only to determine which pixels are outside,
or inside the body, according to the required object, tissue or bone. The image
segmentation creates a new image with a unique intensity for each kind of pixel

value.

The program, in fact, performs two successive reconstructions when a dataset is
opened. One corresponds to the soft tissue model and the other one to the bone
model. Figures 14 and 15 illustrate the segmentation for the soft tissue model. For
such segmentation, bones are ignored; the program considers bones as tissue because

they are inside the body.

' region of interests

28

Interim Report

Figure 14. CT image Figure 15. Image after segmentation

The used segmentation algorithm only tests pixel values. From the CT image, a very
small pixel value corresponds to air, a very high to bone and a medium value to
tissue. These pixel values are the consequence of the fact that the denser a material

is, the more it absorbs X-Rays.

Two different threshold values are defined to perform to different segmentations, one
for the skin and the other one for the bone. The lower value is the border between air
and skin, the second, is the border between skin and bone. Each pixel has to be
tested; if a pixel is inferior to the lower step, it is air; if it is between the two threshold
values, it is tissue; if it is superior to the upper threshold value, it is bone. For the soft
tissue model, all pixel values superior to the lower threshold value are considered as

soft tissue. This piece of code illustrates the algorithm used. It is a threshold

algorithm.
UCHAR* tmp_target_buffer = _BufferSegmentedImage;
UCHAR* tmp_source_buffer = _Buffer8BitsColorDepth;

// Test each pixel
for (int i1 = image_width * image_height; i-—;)
{
if (*tmp_source_buffer++ <= THRESHOLD_VALUE)
*tmp_target_buffer++ = WHITE;
else
*tmp_target_buffer++ = BLACK;

Another method of performing the segmentation is to use a histogram (Figure 16).
It will allow the detection of different ranges of pixels. The histogram counts the

number of pixels for each pixel value of an image.

29

Interim Report

Auar i
MNumber

of

pixel

Soft
ssue

g Bones

Pixel values

Figure 16. Histogram, obtained by Photoshop[27], of the image of Figure 14

On the histogram of the image of Figure 14, there are four different ranges of pixel

values. On Figure 14, there are:

- the range on the left corresponding to the black corners of the source image

- at the right of this range, there is a big range which corresponds to air

- at the right of this range, there is a big range which corresponds to soft tissues

- at the right of this range, there is an important range that corresponds to

bones. The few number of pixels corresponding to bones does not show the

last range pixel value, but it exists.

Removing little artefacts

2D slices can have some artefacts. Their size can be small or big. On figure 17, the

red lines can be automatically removed because the width of the line is about 5 pixels.

The green marked artefacts cannot be deleted because they are too big. If such

artefacts are removed automatically, some detail of the foot, such as the toes, will also

be removed; it is not what the program is supposed to do. Only little artefacts can be

removed.

30

Interim Report

Figure 17 Little artefacts

The classic way to automatically remove this kind of small artefact is to use an ‘open’
algorithm, followed by a ‘close’ algorithm. An «erosion» algorithm followed by a
«dilatation» algorithm composes the «open» algorithm. A «dilatation» algorithm
followed by an «erosion» algorithm composes the «close» algorithm. Appendix B

shows the effect of these four algorithms.

Such methods cannot be used because of the time of calculation. A method has been
found to remove small artefacts. It is not as clean as the open/close algorithm, but it
is faster. This algorithm can only be applied on a segmented image. Its purpose is to
seek small surface defects (surfaces of white pixels) and to remove them (by
replacing white pixels by black pixels). The research of such artefacts is only done in
horizontal and vertical lines; it is why this algorithm is faster than the open/close
algorithm, which does care about all neighbouring pixels. Changes of pixel values
are detected on lines and are removed. The algorithm seeks changes from a black

area, to a very thin white area, to black area. Figure 18 illustrates how it is

performed.

Figure 18. Principle of removing artefact algorithm

This example reduces the matter to a horizontal line. A value, defined by the user,

specifies the number of pixels for the research of artefacts. In this case, it is two. For

31

Interim Report

a white current pixel, the program looks for one of the two (the defined value) pixels
of the current pixel, which is black. The same is done on the right. If a black pixel
has been found on the right and one pixel has been found on the left, the program
replaces the white current pixel by white. If it is not the case, the program tests
pixels, following a vertical line. The following figure shows the result of the

algorithm on the same picture as figures 14 and 15.

Figure 19. Little artefacts have been removed

32

Interim Report

6.2 3D RECONSTRUCTION USING MARCHING CUBE

The step following the image segmentation is the obtaining of a 3D object, which can be

manipulated in the 3D space by the user.

6.2.1

6.2.2

Why the marching-cube

For several reasons the choice is made to convert the surface of the 3D object in a
triangle-mesh. Volumetric rendering is too slow on a current computer. The
program, MedicView [12] allows two kinds of rendering, volumetric rendering and
mesh rendering. MedicView has been tested on a common computer (AMD Atlon
1200MHz with a Nvidia GeForce2 MX and 256 Mo of RAM). The object is difficult
to manipulate with volumetric rendering, because the execution speed is low. With

the mesh it is faster.

For converting the surface to a triangle mesh, two main algorithms are available, the
marching-cube and the marching-tetrahedron. As figures 4 and 5 show, the
marching-tetrahedron produces more inaccuracies than the marching-cube, but its
advantage on the marching-cube is that it is easier to implement. Yet another
important negative point of this algorithm is that it is slower than the marching-cube.
The advantage of the marching-tetrahedron is not enough, to ignore the older
algorithm; the faster algorithm, which produces a more accurate reconstruction, the

marching-cube, has been chosen.

Reconstruction of the surface of the 3D object

The algorithm tries to locate the surface of the object in a logical cube, created from
four pixels of a slice and four pixels of the adjacent slice. If a pixel value is less
important than a threshold, the pixel is outside the surface of the 3D object. If the
pixel value is equal or superior to the threshold, the pixel is on or inside the surface.
The threshold is commonly called isovalue. A cube has eight vertices and each
vertex can have two different states, inside or outside, just eight bits are needed. A
bit is a binary value, which can only be equal to 0 or 1. A byte contains 8 bits. Just a
byte is required to store the state of all vertices of the cube. It was decided that if a
vertex is outside, the corresponding bit is set to 0, and it is set to 1 if it is inside, as it
is specified in the original Lorensen’s article. One bit of the byte corresponds to the

state of one vertex of the cube. Figure 20 illustrates the order of the vertices on the

33

Interim Report

cube and figure 3 shows the states of the vertices’ order in the byte. The following

code allows the byte containing the cube vertices’ states to be filled.

#define DI_VO 1 // =270 = 0000 0001
#define DI_V1 2 // =21 = 0000 0010
#define DI_V2 4 // = 272 = 0000 0100
#define DI_V3 8 // = 273 = 0000 1000
#define DI_V4 16 // = 274 = 0001 0000
#define DI_V5 32 // = 275 = 0010 0000
#define DI_V6 64 // = 276 = 0100 0000
#define DI_V7 128 // = 277 = 1000 0000

/* Find which vertices are inside or outside of the surface
*

* — put a 1 to the bit if the vertex is on or inside of the
* surface
* — put a 0 to the bit if the vertex is outside of the surface
*/
// Fill the byte with zeros
cube_description = 0;

if (*p_first_slice >= THRESHOLD) cube_description += DI_VO;
p_first_slice += cube_width;

if (*p_first_slice >= THRESHOLD) cube_description += DI_V1;
p_templ = p_first_slice + x_stepl;

if (*p_templ >= THRESHOLD) cube_description += DI_V3;
p_templ += cube_width;

if (*p_templ >= THRESHOLD) cube_description += DI_V2;

if (*p_second_slice >= THRESHOLD) cube_description += DI_V4;
p_second_slice += cube_width;

if (*p_second_slice >= THRESHOLD) cube_description += DI_V5;
p_temp2 = p_second_slice + x_stepl;

if (*p_temp2 >= THRESHOLD) cube_description += DI_V7;
p_temp2 += cube_width;

if (*p_temp2 >= THRESHOLD) cube_description += DI_V6;

By using masks, any bit of the byte can be filled.

The following instruction puts zero in each bit of the bytes.
cube_description = 0;

It becomes:
0{0]0]0]|0|0]|0 |0

By adding a value to the cube description variable, the value of the wanted bit was

changed, for example, if the vertex 0 intersects the surface, I will add DI V0.

34

Interim Report

cube_description += DI VO0;
It becomes:

0/0]0]0|0|0]0]1

If the vertex 3 also intersects the surface, I will add DI V3.
cube_description += DI V3;
It becomes:

0/0]0]0|1|0]0]1

If the vertex 5 also intersects the surface, I will add DI V5.
cube_description += DI V5;
It becomes:

0/0]1]0J1]0]0]1

Now the cube description is equal to 2° + 2° + 2° = 41

As a cube has 8 vertices that can have two different values, there are 8° = 256
different cubes. It is possible to write my own lookup table, but it is very easy to
make mistakes. Moreover, it is already done and available on the Internet. The table
that I have used has been found on the Bourke’s Internet site (from the Swinburne
University of Technology in Australia) [16]. According to the lookup table, the cube

edges and vertices order is the following:

v L cd v
&7
e
R s
. i ﬁ_ —= v6 e9
: el L
el vi) L 10 |
€3/
_ el
v 5] V2
vertex
edge

Figure 20 Cube edges and vertices index

After seeking which vertices are on the surface or not, I obtain a byte. Its value varies

from 0 to 255. It gives me an index to find in the lookup table if an edge of the cube

35

Interim Report

GLbyte g_triangle_connection_table[256 * 16]

{

intersects the surface of the 3D object. At least one edge intersects the surface if at
least one vertex of the cube is on the surface; but if all vertices are on the surface, no
edge intersects the surface because the cube is inside the 3D object. If the surface
intersects the cube, I seck triangles that have to be reconstructed in a lookup table
using the same byte as index. This lookup table is composed by 256 * 16 elements
(256 because there are 256 different cubes and 16 because a cube may have five
triangles and a triangle is composed by three vertices). The following piece of code

is the five first lines of this lookup table.

_11 _1/ _1/ _l/ _l/ _l/ _l/ _l/ _1/ _l/ _lr _lr _lr _l/

1, -1,

Or 8/ 3/ _1/ _1/ _l/ _l/ _l/ _l/ _l/ _1/ _l/ _lr _lr _lr _l/
Or 1/ 9/ _1/ _1/ _l/ _l/ _l/ _l/ _l/ _1/ _l/ _lr _lr _lr _l/
1/ 8/ 3/ 9/ 8/ l/ _l/ _l/ _l/ _l/ _1/ _l/ _lr _lr _lr _l/
i, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

To consider the third line of the example, that is to say 0, 1, 9, -1, ... To access this
line, the cube vertices description byte is equal to 2, that is to say that only the vertex
1 is on the surface. For reconstructing the surface at this cube, a triangle has to be
drawn using the edges 0, 1 and 9 like the figure 21 shows. It is the values found at

the considered line.

&7

vertex
edge

Figure 21 The vertex 1 intersects the surface

36

Interim Report

6.2.3

To reconstruct the whole surface of the object, the cube is marched through the whole

volumetric data using three loops. To do it, the following loops can be used:

// Use all slice
for (z = 1; z < _NumberOfSlice; z++)

{
// Load the next slice

// Use all rows of the image
for (y = 1; y < _ImageHeight; y++)
{
// Use all pixel of the current row of the image
for (x = 1; x < _ImageWidth; x++)
{
/* Test cube vertices and draw triangle
* if it is needed

*/

// March the cube

Optimisations

CT and MR scanners get volumetric data by turning around the scanned object. The
way followed by scanners is a spiral. Produced slices are not parallel. The result of
the reconstruction shows that it is not needed to have a parallel slice if the space

between two successive slices is not too big.

As the 3D objects do not change during the setting of the radiography, the program
can store them into the memory and does not have to reconstruct them each time that
the screen is refreshed. Moreover, as the 3D reconstruction takes a long time, the 3D
objects have to be stored in memory. 3D objects are a set of triangles. Three vertices
compose each triangle. Each vertex is composed by its coordinates, that is to say,
three floats. To reduce the size in memory as much as possible, an array of vertices is
needed for each object where vertices are unique (the same vertex is stored once). To
reduce the size of the first array, each vertex is stored once. To get triangles from this
array, another array is needed. It stores a succession of triangles by referencing three

vertices by triangle (Figure 22).

37

Interim Report

Array of vertices
250.0(330.0| 15.0 {245.0|330.0 | 20.0 | 250.0|325.0| 20.0 {260.0|325.0 | 20.0

X y z X y z X y z X y z
Vertex (Vertex 1 Vertex 3
0 1 0 3 1 3 0
Triangle 0 Triangle 1 Triangle 2
Array of triangle

Figure 22 Example of the vertex and index arrays of a 3D object

It is impossible to predict the number of vertices and triangles before carrying out the
marching-cube. As the size of an array is fixed, one can be used. The only data
structure that can be used to store the vertices of the 3D object during the 3D
reconstruction, is a linked-list (Figure 23) because the size of the list is not fixed. As
node as it is required can be added to the linked-list, the only limitation is the memory
size. When a new vertex needs adding to the list, a new node is created. The
implementation of the marching-cube uses two lists, one for the vertices and the other
one for the triangles. When the program has got the 3D object, it creates two arrays

and copies the linked-lists into the corresponding arrays.

Pointer on the Value |Pointer on the Value | Pointer on the

1* element next element next element

Node 0 Node 1

Figure 23 Linked-list

For reducing the size of the vertices’ linked-list during the reconstruction and the size
of the corresponding final array, the same vertex cannot be found twice in the array.
For this, a check is needed to see if a vertex is already on or not on the linked-list.
Normally each vertex of the list has to be tested and the three components of the
vertices compared. A method is used for optimising this point. The linked-list is
sorted, firstly on x, then y and then z. Like that, not all vertices of the whole list are

tested; a sorted insertion is carried out.

38

Interim Report

The same optimisation could be done twice using a double linked-list. For a double
linked-list, each node contains a pointer on the previous node. For the insertion of a
node, the average of the x-component of the first and the last node is calculated. If
the x-component of the node to be inserted, is nearer the value of the x-component of
the first node, vertices are tested from the beginning, else from the end. The

reconstruction should be much faster than with the use of the previous method.

The marching cube uses image processing. Image processing algorithms are
generally very expensive to execute. To go through a whole greyscale image the

basic method is as follows:

// Declaration of the image as a 2D area

unsigned char p_image[image_height] [image_width];

unsigned char pixel_value;
for (int 1 = 0; 1 < image_height; i++)
for (int j = 0; Jj < image_width; J++)

pixel_value = p_image[il[j];

As the image is defined as a 2D area, the number of processor instructions to get a
value is really important. It needs multiplications, which are slower than additions. It

can be reduced by using a 1D area and a ‘reverse loop’.

unsigned char p_image[image_width * image_height];
unsigned char* p_tmp = image;

unsigned char pixel_value;

for (int i1 = image_width * image_height; i-—;)

pixel_value = *p_tmp++;

Some values are needed several times during the execution of the marching cube
algorithm. Some of them do not change. They can be stored in memory, as the

program does not have to calculate them each time that is needed.

GLubyte nb_pixel_not_used_per_row((_CurrentWidth - 1) %
cube_width) ;
GLubyte nb_pixel_not_used_per_colon((_CurrentHeight - 1) %

39

Interim Report

6.2.4

cube_height);
GLubyte nb_pixel_not_used_per_slice((_CurrentDepth - 1) %
cube_depth) ;

These values are needed each time that the cube moves, but they never change. If the

program calculates them each time, it will become long.

To get the byte, which describes the vertices’ cube, additions are used, not bit
shifting, because, the mesh is reconstructed once, not in real time. Using additions,

this part of the algorithm is slower than using bit shifting, but easier to read.

Bit shifting is only used for dividing an integer (int, which is 32 bits variable, or short
(16 bits) or char (8 bits)) by two because it is easy to read ((i >> 1) and (i / 2) are the
same thing) and it is much faster. A multiplication of numbers by 2 are replaced by a

sum. (i+ 1) is faster than (i * 2) because addition is faster than multiplication.

Reducing the LOD"'

The previous example shows the three loops for performing the marching-cube with
the smallest cube possible, that is to say, with the biggest resolution. It produces a lot

of faces, too much for current computers.

Generally, for the marching-cube used with volumetric data as a succession of 2D
slices, a cube marches between each pixel of the 2D pictures. For the dataset of the
phantom of the foot, the reconstructed object of the soft tissue (Figure 29) is
composed of about 500 000 triangles and 450 000 vertices. It is the same for the
reconstructed object of the bones (Figure 30). It is really too much for a current
computer. The result looks good, but the manipulation of 3D objects in the space
becomes difficult, because it is too slow. Moreover, the 3D reconstruction is very
slow. At least 24 hours are needed to get the skin model and the bone model (the

reconstruction is so long because of the use of a linked list).

A choice has been made between two methods. The first method is to grow the
number of pixels per cube (Figure 24). The second method is to reduce the size of
each slice. This method is quite simple in 2D. For a slice, only some pixels are
considered and interpolated, but in 3D it becomes more complicated, because the
interpolation is done between different slices. If such an algorithm is done, the

reconstruction becomes very long.

1 Level Of Detail

40

Interim Report

The following figure illustrates how the LOD was reduced; a bigger cube size is used,

some pixels are ignored.

A,
.
S LS
LT
P
A,
A
L S S S S

Figure 24. Bigger cube size principle

As the result on the screen looks acceptable enough (Figure 25), this method has been

retained.

sy
e
.

!

" - . T
- N
"\1.\ ;}

“-L'-"I:@{L“'-.i-";

ey

Figure 25 Increasing the cube size

The visible result shows something else. The little red lines of figure 17 are no

longer a problem. Just a few artefacts appear. That is why the algorithm for deleting

little artefacts is disabled; it was decided that it is more important to get a fast

reconstruction than removing all the little artefacts. The calculation time decreases.

41

Interim Report

Another method reduces the number of artefacts of the reconstructed model. Some
areas can be ignored if the user selects some regions on an image where the pixel

values are not used during the reconstruction.

6.3 NORMAL

To get a 3D model, in a scene with lights, the program has to calculate normal. Two ways are
possible to achieve this. There can only be one normal by face, or one normal by vertex
(three by face).

Calculating normal by face is done by using the cross product between two vectors that define

a triangle. At the end, triangles are too much visible.

The second method produces a more realistic result. Figure 26 has been obtained using this
method; it produces a Gouraud shaded mesh. Getting a unit normal vector for each triangle
vertex, consists of calculating the gradient vector, because the direction of the gradient vector

1s normal to the surface.

The gradient is computed like this:
Gi(i,j, k)= (DGE+1,j,k)-D@G—1,], k) / dy
GY(i,j, k) = (D(l,.] + 1, k) 7D(1,J - 1, k)) / d}'

G, j, k) = (D@, j, k+ 1) = DG, j, k- 1)) / d,

With D(i, j, k) the density at pixel(i, j) in slice k.
With d, d, and d, the lengths of the cube edges.

The program has to store and manipulate four successive slices at a time. The first and the

last slices are used only for the normal computation.

42

Interim Report

Figure 26 Gouraud shading

As vertices obtained by marching cube are on the middle vertex of the cube edges and the
method for calculating normal gives normal at cube vertices, the algorithm has to calculate

eight normal by cube (Figure 27) and interpolate them to get the required normal (Figure 28).

L /o /S)/ L /o /S /
SN S Y
/‘\/Ls,/

Figure 27 Normal at each cube vertices Figure 28 Linear interpolation of normal

The algorithm of the interpolation is as follows:

N{\i ‘,i Nx.vy,z) Nl[xl,}'l.zl}
|(d % d 1

k : 5

N1 and N2 are the normal at vertices of the same edge of a cube.

N is the normal at the middle edge:

X:X1+(X2*X1)*D/d:X1+(X27Xl)*0-5

43

Interim Report

y=yit+t2—y) *Did=y + (y2—y1) *0.5
z=z71+(z—2) *D/d=2z,+ (2o —21) * 0.5

As the image processing algorithm used is applied in 3D, it is slow; that is why the program is
optimised by the used of backup variables. Each value used several times is stored into
memory. The program becomes less easy to read, in spite of the use of characteristic variable

names, but it becomes much faster.

6.4 TEXTURING

The photo-realistic aspect of the reconstructed object is not a priority. The real-time
manipulation of 3D objects is the priority. As the use of light means a lot of calculating time,
it was decided that it was not necessary to slow down the program by using texture mapping.
The use of textures would increase the photo-realistic aspect, but it was preferred use just two
surface materials corresponding to the type of 3D object. Determining the ambient, the
diffuse and the specular reflectance of the materials can simulate material properties of a
surface. For the skin surface, the material used imitates the colour of human skin with a
realistic property of shininess and specular component (Figure 29); the bones are represented

by a matte white effect (Figure 30).

Figure 29 Skin material Figure 30 Bone material

44

Interim Report

CHAPTER 7 - GRAPHICAL USER INTERFACE

For setting the scene with these reconstructed objects, the X-Ray source and the cassette, a
user-friendly GUI is needed. Philip Cosson, who proposed this project, would like to have a
program that works with different Microsoft operating systems. Therefore, the API chosen is

the Microsoft’s Win32 API. Appendix C shows the main window of the program.

7.1 GUI ARCHITECTURE

The use of the program is divided into three different steps. The first is the obtaining of the
3D objects. The second is the setting of the scene. The last is the execution of the X-Ray

rendering program.

The following schema presents the architecture of the GUI with all different main events.

Execute Open the File->Quit . | Quit the
el ALY —
the program | main window Crl+'Q program
o Fiie->()Een; Open the Select a Fill the Select the Fill the
’ Ctrl+'Q' Open file window | DICOMDIR file | patients list| jg; patient, studies list
2 Select d Select a Select the
Selecta . . gk N
g file DICOMDIR|file /léll.lt:m It stucy
Select the
Load the xrg file Click R Select a The dataset is | ~ /st series Fill the
and store 3D objects O C datiseris xrg file selected Selecta series list
i OK button selected o
in memory Click

U study
5 . Cligk.on OK button Cancel
Select series =

Return to the

ain window

‘IE' + a mouse button +

mouse move

Display :

"T! + a mouse button +
MOuse move

Display :

Click on OK button 3D reconstruction

setting window

Perspective View

J Left click in an
orthographic view
Display

Rotate selected object

Select or not
through one axis

an object

REHILCIcicn the .7

pcrswuti}jc view

X' + left button +

Translate selected

object along one axis Wit events

on
button

Middle button + loop mouse move Zoom in or
Rotate selected object MoUSe move M’— Zoom out
through two axis Display : Reset view menu >
v | Set the cassctte
Right button * X' + right button + e wAndow
Translate selected MOouSe move SEZE WINAOW
e e Diswlers mouse move Pan the
object along two axis isplay . Display cimera
Orthographic views Casseffe menu
TDispim’

Figure 31. GUI events

45

Interim Report

7.2 SETTING THE 3D RECONSTRUCTION

The 3D reconstruction needs parameters. The cubes’ sizes, the two thresholds for the

segmentation, require user input.

7.2.1

7.2.2

Setting the segmentation parameters

A window is dedicated to the 3D reconstruction setting. The user can set the size of

the two cubes, one for the skin model and the other for the bone model.

Two sliders allow the user to set the threshold. The user can see in real-time the
corresponding segmentation, but as the value can be between 0 and 65535, the sliders
are not accurate enough. Textboxes should be added if there was time, because the
users should be able to set any value that they require. The original image is
displayed near the segmented image. Users can change the loaded slice with a ‘spin

control’.

Appendix C shows the window used.

Reducing the 3D object’s loading time

The 3D reconstruction can take a long time. It depends on the required resolution.
The same reconstructed object can be used several times, therefore, it can be stored in
a file. To test the marching-cube, it was decided to store reconstructed objects in an
ASCII file format of 3DS Max[26]. 3D file viewers allow this kind of file to be
visualised. The shareware used is 3D Exploration[22] because it reads many different

file formats. Such files can be opened in a text editor, which is useful for debugging.

It has been decided to change the file format for several reasons. ASCII files are
bigger than binary files. As it is bigger, more time is required to load them. That is
why a binary file format is used. An existing file format could be used, but for space
optimisation, it has been decided to store only what the program requires. It required
the Patient ID, the Study ID, the Series ID (corresponding to a DICOMDIR file), the
skin mesh and the bone mesh. As the program needs specific information, such as the
different IDs, a file format has to be created for this project. Appendix D shows the
file format created for the GUI, the file extension of this file is ‘XRG’ for X-Ray
GUIL.

46

Interim Report

Such files have to be located in the same directory as the DICOMDIR file, otherwise,
the program should ask where the DICOMDIR file is, to know where the dataset is
for sending this parameter to the other program. But as I am not able to read
DICOMDIR files, the program asks for the first and the last DICOM files of the

dataset.

When the 3D objects are loaded from XRG files or are reconstructed from the dataset,

the 3D objects are integrated in a virtual world.

7.3 GETTING PROPORTIONAL SIZES

The different 3D objects, which composed the scene, have to have proportional sizes.
Information, in millimetres, is saved in DICOM files. The unit chosen is the millimetre

because of this fact.

The cassette, or X-Ray receptor, is just a cube. Its value can be
chosen from a menu because there are standard sizes. If users
needs a custom size, they are able to enter their own parameters

in a window.

Figure 32. The cassette

The X-Ray source, or X-Ray emitter, uses two wire .
frame cubes for the ceiling tracks and a solid cube for

the vertical column. A solid sphere is located at the o
bottom of the column. A line shows the direction of

the X-Ray’s beam.

The longer of the ceiling tracks is 3 meters. The

space between lines is 10 centimetres. The radius of -

the sphere is 20 centimetres.
Figure 33. The X-Ray source

47

Interim Report

The DICOM files store information about the space

between two adjacent pixels, the space between two P et

successive slices and the thickness of slice. DICOM
part 3 describes these parameters. Using them during
the reconstruction, the cube size in pixels is modulated

to get a size in millimetres. Depending on the dataset

used, the result do not always look like what was

expected. More time is required to make the method Figure 34. The patient

more accurate.

7.4 SETTING POSITIONS AND ORIENTATIONS

The easier way to set a 3D space is to have at least
three orthographic views. That is why the GUI was
given three orthographic views; top, bottom and
left. A fourth view, which simulates a more
realistic view, is perspective. Figure 35 shows how

the world is set up.

As there are three different objects in the scene, the
user has to select an object before rotations and
translations. Two different methods can be used to
select an object. In orthographic views, the user can
select an object just by clicking on it with mouse

using the left button (as in any Windows program).

Figure 35. The world with the

perspective camera

To do this, the mouse pointer coordinates are translated from screen in pixels to millimetres.

This conversion depends on the zoom factor of the view where the user has clicked and the

kind of the view (top, bottom, front, back, left or right). In the perspective view, the user can

double-click anywhere with the right mouse to change the selected object.

To be easier and more user-friendly, it is possible to zoom-in and out and pan the camera to

any view. To do this, the user must press and hold ‘X’ on the keyboard, and use the left

button to zoom, or the right to pan, in the same manner as Softlmage[23].

48

Interim Report

7.4.1

7.4.2

Cassette and patients

In the orthographic view, the user can translate the selected object under the cursor
position, if he presses and holds the right mouse button and moves the mouse. It

cannot be more user-friendly.

The rotation is inspired by the internet browser plugins of Viewpoint
Corporation[24]. These plugins allows the user to manipulate 3D objects with the
internet browser, using the mouse. The plugins do the rotation through two local
angles. But the plugins manage only one view. The same technique is done in the

different orthographic views. The local axis chosen depends on the view.

For top and bottom views, a horizontal move of the mouse applies a rotation through

the z-axis, a vertical through the x-axis.

For front and back views, a horizontal move of the mouse applies a rotation through

the y-axis, a vertical through the x-axis.

For left and right views, a horizontal move of the mouse applies a rotation through

the y-axis, a vertical through the z-axis.

X-ray beam sources

The X-Ray source can be selected in an orthographic view only if the user clicks on
the sphere. It is impossible to move an actual X-Ray machine by moving the column

or a ceiling track; it is the same thing with the GUI.

In the orthographic view, the user can move the X-Ray emitter using the same
method as for moving the cassette or the X-Ray source. The same method as the
other objects’ rotation is used for the X-Ray emitter. The result is not perfect.
Although this method produces a user-friendly rotation for the patient and the
cassette, it is not the case with the X-Ray source. This difference comes from the fact
that the X-Ray source is just represented by a line. More time is needed to create a

more user-friendly rotation of the X-Ray source.

The control of objects in the perspective view is different. It is possible to move objects in

the perspective view, using the mouse and the keyboard. It is easy to move any object. The

translation along the x and the y axis is performed by pressing and holding the ‘T’ key and

using the left mouse button. For a translation along the z-axis, the right button is used.

49

Interim Report

For rotating objects, it is possible to press and hold the ‘R’ key, and use the left button to
rotate around the x-axis, the middle to rotate around the y-axis and the right button to rotate

around the z-axis.

7.5 THE LINK BETWEEN THE GUI AND THE X-RAY RENDERER

The GUI sets some parameters needed by the volumetric rendering program; the name of the
file of the dataset, the patient, the study and the series indices, the position and the rotation of
the patient, the cassette and the X-Ray tube and the size of the cassette have to be known by
the renderer. Three different ways are possible for the companion program and the GUI

program to work together.

Theoretically, communication between processes is possible, but, as the two programs have
been developed independently by two different programmers, it is difficult to implement the
communication and test it in the given timetable. Moreover, this method makes programs
dependent on each other, because shared memory between processes has to be used. The
shared memory has to be created by only one process. Such a consequence makes the testing

of each program difficult.

Another method is the use of a temporary configuration file written by the GUI program and
read by the rendering program. After creating the file, the GUI can create a new process from
the executable file of the companion program, or the user can create it via a OS'> command

(as the console, or a shortcut under MS-Windows).

The last method consists of passing information to the renderer via the command line
arguments. The rendering program has to read and translate a string obtained by its ‘main’

function of the program.
Example of use of the command line arguments: file.exe arg0 argl arg?2 arg3

The agreed protocol is the last one, because it is easy for the two programmers to use and is
fast to implement. The programs are totally independent; it is easy to test a program without
the other. The GUI creates a child process from the executable of the renderer and passes
required arguments by the command line arguments. Appendix E illustrates the order of

parameters and how to use command line arguments when a program creates a child process.

2 Operating System

50

Interim Report

CHAPTER 8 - PROGRAM IMPLEMENTATION

DESIGN

8.1 GENERAL DESIGN

As sharing code between different programs is an important aspect of programming, the

program design of any program must be thought. It was decided to divided the program into
four parts (Figure 36). The DICOM and DICOMDIR file reading functions are part of a

library. A core library has been used, consisting of a C++ class which manages strings,

template C++ classes for managing linked-lists and mathematical functions. Another part is

dedicated to the graphical aspects, the windows management and 3D. The last one is the

most specific code of the program, it manages all different windows and events of the

Core Library
BAlih

strings management
alzebra functions
linked-lists

(double linked-lists, trees, lifos)

i

DICOM library
Dllib

DICOM file
PICOMDIR fle
Dataset

k!

vl

7

PR

Graphic library
GRIib

3D objects

camera

bitmap font

light

material

windows management

GUI

Events management]

Figure 36. General implementation design

interface. The purpose of
libraries is to deal with
functions. These
functions are common to
different programs,

libraries 1illustrate the

important aspect of

sharing code between

programs. In this code,
there are three libraries

(Figure 36).

51

Interim Report

8.2 CLASSES AND LIBRARIES

As my program is the first step of the development of another program, which will use VR
devices, the libraries can be included in future programs for dealing with DICOM files and

marching, for instance.

The programming language chosen for writing this program is the C++. It is an oriented
object language. It is an evolution of the C language. The interest in C++ is the concept of
Class. A class is a kind of structure that contains variables and functions. A useful concept
of oriented languages is the inheritance. If two classes, A and B, inherit from the same class,
C. A, B and C will share functions and variables of C. The library managing DICOM files
and DICOMDIR files is a good example. DICOMDIR files are a particular kind of DICOM
files. DICOMDIR files do not contain any image, but store specific information. The figure
37 shows how the DiLib library is organized.

Papyrus Toolkit API The Papyrus toolkit deals with

both file formats. It uses exactly
the same function for opening and

closing files. Records are accessed

class DiFil .
with exactly the same method.
The class DiFile manages
L : functions that the class
class DiDicomFile | |class DiDicomdirFile L . .
N DiDicomFile shares with the class
DiDicomdirFile.

/

B uses functions of 4
C inherites from B

The class DiDicomFile contains
specific functions useful to manage
images.

Figure 37. Structure of the DiLib library

Normally the library manages

DICOMDIR files, but this class is not complete because I am not able to read the whole file
using the Papyrus library. Christian Girard of the Papyrus development [6] team has helped
me by e-mail to use his library. His help was useful, but as the reading of this kind of file is
not a priority, I have preferred not to spend too much time on it. Between the companion
program and the GUI, an agreed protocol has been defined to the DICOM files used by a

dataset:

52

Interim Report

Parameters are sent from the GUI to the X-Ray renderer:

o a string containing the files directory

o A string containing the common part of all DICOM files

o A string containing the digits following and including the first non-
zero digit of the first file name of the dataset

o A string containing the digits following and including the first non-

zero digit of the last file name of the dataset

This example shows the different parameters sent to describe the dataset, which starts at the
file “IM_00005”, finishes at the file “IM _00180”. Its files are located in the
“H:\foot\dicom\””:

1* parameter: “H:\foot\dicom\”
2" parameter: “IM_00”
3™ parameter: “5”

4™ parameter: “180”

8.3 CODING STANDARD

As the code of the program will be used by other programmers, it has to be very clear and
well documented. Some choice has been done in the method of writing code. The design of
the code must be considered for future evolutions of the work to be as easy as possible to read

and modify. To increase these two points, some coding standards have been decided.

For example all file names of a library start with “CC” (capital letters for case sensitive file
system) if the library is written in C++ or “C” if it is C language. Then there is the first two

b

characters of the library name, as “DI” for a file of the DiLib. It is followed by a ‘ ’ and
usually by the class name (without the two first characters of the class name and in
lowercase). All class names of a library start with the two first characters of the library, as
DiDicomFile for the class managing DICOM files. This class definition is written in the

“CCDI_dicomfile.h” header file.

It is as important that the variable names are very explicit. For example, g p image, is a
global variable, its first character is ‘g’, it is a pointer ‘p’ to an image. It allows the reader of
the code to understand easily by using a standard in the whole code. A class member always

starts by an © ’, as “ plmage”.

53

Interim Report

8.4 JAVADOC

Programming languages allow comments. The comments can be used by external programs
to automatically generate documentation by reading and interpreting comments. Two
standards exist. There is the Javadoc style of comments and the QT [20] style. As the
javadoc style is probably the most used, I have commented header files using this style.

Using Doxygen [21], an open source program that analyses source files and generates
documentation using Javadoc or QT style, I am able to create a documentation in HTML, rich
text format (RTF) or man page. Doxygen is class compliant. It determines interactions
between classes as inheritance and shows class hierarchy as in Appendix F. It can create
documentation about public functions if header files have good comments. It can be very
useful for further programmers who would like to use the code because all functions’ class

methods are listed.

54

Interim Report

CHAPTER 9 - USERS’ TESTS

The subject of this project has been proposed by Philip Cosson. The resulting program

should be used by students in radiography. From my point of view as developer, the program

has to be tested by the programmer who has created it to reduce the number of bugs, but not

exclusively. Final users must test it to give the developer feedback on his work.

Tests have been carried out by different kinds of people. A short “Getting started Guide” has

been written. It was given with a tutorial, a test and some printed questions (Appendix G).

9.1 USER’S POINT OF VIEW

9.1.1

Radiography students

Each of the two radiography students who have tested the program, have used it for
one hour. The setting of a 3D space seems to be very difficult for people who do not
use computers a lot. These two students do not often use computers. It is difficult for
them to imagine the space in 3D and the purpose of having three different
orthographic views. They were, however, able to execute, step by step, the tutorial
almost without help. The printed questions were not useful there because there were
discussions during the two tests. They have not tried the prepared test because of the
duration of our meeting. During those discussions, many points were raised

concerning a more user-friendly program such as:

- Distance between objects (as SID") should appear somewhere

- Having the link between colours and objects (e.g. green = patient) inside the
interface or in the help menu.

- Having a zoom factor in percentages

- Lock objects together to allow user to move several objects at the same time

- Zooming in on the selected object automatically

- Pan in the perspective view

- A bigger sphere for the X-Ray source

The conclusion of these two tests was that the program is not easy to use but it is

possible to learn how to use it. From a developer’s point of view it is important to

13 distance between X-Ray emitter (the source) and receptor (the cassette)

55

Interim Report

note that the two students do not often use computers; they seemed to be a bit afraid
of them; they did not click anywhere to try to understand how it worked. They did
not always press the mouse buttons hard enough and were not really familiar with the
double-click procedure. Although the tutorial was quite difficult for them, it is
impossible to consider that these tests failed, since the discussions are the starting

point of possible improvements.

Students using 3D packages

Two different CAGTA students with different backgrounds (one 3D programmer and
one 3D package user) have tested the GUI. They only needed information about what
they have to do with the program. The tutorial and the test were carried out easily
and quickly. They were not afraid of clicking anywhere and trying different controls.
Since they had no problems using it and had a positive experience with the GUI

control, they had some ideas for improving the interface:

- Having a link between colours and objects when the mouse is on an object (like
3DS Max)
- Pan in the perspective view

- A bigger sphere for the X-Ray source

It was interesting to also have the point of view of programmers and 3D package
users who do not have the same priorities as radiography students and can understand
what they are asking about in terms of programming. Their requests, however, were

also the same as those expressed by the future radiographers.

Computer users without 3D knowledge

Two other persons have accepted an invitation to test the GUL. One is a musician
who plays 3D games quite often and the other one is a network administrator. As
contacts were carried out by e-mails, the written questions were useful to guide their

criticism.
At the beginning they had problems with the controls, but after “playing” for 20

minutes they were able to understand how it works. The tutorial and the test then

seemed to have been easy.

56

Interim Report

Their needs were totally different. For one of them, the zoom and the movement of
the camera in orthographic views were too fast; for the other, the controls were not

detailed enough.

9.2 MY OWN POINT OF VIEW

It is a great challenge to do a user-friendly GUI for setting a 3D space. Moreover when users
are not familiar with a computer, it becomes harder. The tests done by different kinds of
users were successful, because everybody was able to set the 3D space, with less or more
time, following the tutorial. Some aspects are very easy to use, such as the selection of an
object (except the X-Ray source which is too dark and too small). Others are difficult, such

as understanding the different orthographic views.

I agree with all points, which can be changed, but in the timetable I have, I will not be able to
change them, I await the opportunity to do them. I think that the first radiography student has
reviewed her test quite well; it is difficult to use at the beginning, but it is possible to learn
how it works. The 3D gamer has reviewed the GUI differently; it is easy to use when the user

understands how the GUI works.

57

Interim Report

CONCLUSION

The subject of this project has been proposed by Philip Cosson, from the School of Health
and Social care at the University of Teesside. He wished to have an X-Ray simulator. As it is
a considerable task, it was divided into two projects, a user interface and a X-Ray renderer.
Dividing the work in two was sensible, since it was not possible to implement all the details
of the GUL. Moreover, it was interesting to work on the same project as someone else,
because it was possible to share information. A number of problems were found by one of us
and solved by the other or with his help, notably, the case of the image reading from DICOM
files.

In this program, a 3D virtual radiography laboratory was created. It is composed of an X-Ray
machine (emitter), a cassette (X-Ray receptor) and a patient. The patient is reconstructed in
3D from CT scanned data stored in DICOM files. I have discovered this file format, the
current standard of medical image files and I read this kind of file to extract images and some
other useful records. The DICOM standard version 3 also deals with another kind of file
format, DICOMDIR. I am not able to read it, but one day I might do some more work on
this. Before starting the project, It was said that the marching-cube can extract 3D objects
from volumetric data. But I had never implemented the algorithm before. For this project, 1
have successfully written my own version. It creates 3D objects with Gouraud shading from
volumetric data obtained by CT scanners. Two meshes are created from the same dataset, a
bone model and a skin model. At the beginning, Philip wanted very realistic models with
skin texture, but I have found that it was not needed if the material properties (ambient,
specular and diffuse colours) are well adjusted. It allows retention of the speed of rendering

without the texture mapping.

For the reconstruction, I cannot use the images of the dataset directly, I have to perform some
image processing. The problem is the calculation time of image processing algorithms. 1
have implemented a fast algorithm that removes small artefacts, but it is no longer used
because I now use my own method for reducing the level of detail.

To determine the kind of each pixel (soft tissues, bone or air), I just use threshold. The
threshold needs user’s input. It is not automatic. I have thought about a method for doing it

using a histogram, but I did not have time to implement it.
The reconstruction is done with the famous marching-cubes algorithm. It was important for

me to implement this algorithm by myself , because next year I am going to become a

computer medical imaging student and this algorithm is very famous in 3D medical imaging.

58

Interim Report

The marching-cube is old (1987), but it is still used for 3D reconstruction of medical
volumetric data or the visualisation of mathematical functions in real time using scalar fields.
The disadvantage of this method is the high number of vertices and triangles, which compose
reconstructed objects. The manipulation of reconstructed objects is impossible when the
number of triangles is to high. I must decimate reconstructed polygon meshes. Some
algorithms allow reduction of the number of triangles of a 3D object with the loss of only a
few details, but as I did not have the time to implement one, I have written my own method,
which is faster, because I compress the volumetric data losing accuracy. All voxels are no
longer used, in fact, the cube of the marching cube is bigger than a voxel. Moreover, the
marching becomes faster. Several hours are needed to reconstruct the skin and bone models
using the smallest cube possible, a voxel. The speed is slow because image processing
algorithms are usually slow. Moreover, each time that the cube generates a triangle, I have to
test if the triangle vertices are already in the list of vertices. If it is the case, I do not add the
vertex. Seeking in a link-list is slow. I have speeded up the research by using an sorted
linked-list. As I use a sorted double linked-list, I can increase the research by seeking from
the beginning of the list if the vertex that I want to add, is nearer the first vertex on the list, or
from the end, if it is nearer to the last vertex on the list. Unfortunately, the timetable of the

project does not allow me to implement and test if it is actually faster.

The second part of my work is the writing of a GUI. It is tricky to do a user-friendly
interface for people who are not in the habit of using computers. The interface has been done
in Win32 APIL. It is the first time that I have written an interface using this API. 1 have
learned, its principle, not without difficulties. It is perhaps often used for writing programs
for MS Windows, but it is not well documented. At the end I have an interface, which works
and which can be used by radiography students. It is not as user-friendly as I want, but user’s
feedback came too late to improve much of the GUI. The most important fact, from my point
of view, is that the program works and that the students in radiography can use it, probably
with some difficulty at the beginning. Two radiography students have tested the interface.
They succeeded in using it. They needed a long time to understand the principle of the GUI,
because it is not easy to use and set a 3D environment the first time. But I think that the more
they have the opportunity to use computers, the faster they can learn how to use the GUI.
With a bit more training, they should be able to use it with less problems. My satisfaction
comes from the fact that I have learnt how to use Microsoft API and produced an interface,
which can be used by radiography students, although more time is needed to implement the
requests of the students to make it more user-friendly. This project may serve as a base for a

future Virtual Reality project, using other kinds of devices.

59

Interim Report

I am satisfied with this final project because the final program works. It is not completely
finished, but it is perfectly usable. It has been rewarding to get my first GUI using the
Microsoft Win32 API. 1 have enjoyed writing my own implementation of the marching-cube
algorithm and getting 3D reconstructed objects of skin and bone using volumetric data stored
in standard medical image files. My final project has confirmed my wish of carrying on my

study in computer medical imaging research.

60

Interim Report

REFERENCES

[I] LORENSENWE &
CLINEHE

[2] PIQUET CARNEIRO B
et al

[3] VOLLMER et al

[4] SCHMEDE W J et al
[5] RAJSHEKHARLY et al

[6] UIN" University

Hospital Geneva

[7] CLUNIE D

[8] KRUG W & RORDEN C

[9] UIN" University
Hospital Geneva

[10] Rubo Medical Imaging
BV

[11] Steinhart Medizinsysteme
und elektronische
Datenverarbeitung

[12] FIDLER V et al

[13] University of Umea

[14] REMS Software
[15] MONTES M et al

Marching cubes: A high resolution 3D surface construction

algorithm, ACM SIGGRAPH 1987, 163-169

Tetra-cubes: An algorithm to generate 3D isosurfaces based

upon tetrahedral, Anais do IX SIBGRAPI'96, 205-210

Improved Laplacian Smoothing Of Noisy Surface Meshes,

EUROGRAPHICS 1999, 131-138

Decimation of triangle Meshes, ACM SIGGRAPH 1992,

65-70

Octree-Based Decimation of Marching Cubes Surfaces,

IEEE Visualization 1996, 335-499

Papyrus toolkit,

http://www.expasy.ch/UIN/html1/projects/papyrus/papyrus.
html

Dicom3Tools, http://www.dclunie.com/dicom3tools.html

ezDicom medical viewer, Www.mricro.com

Osiris,

http://www.expasy.ch/UIN/html1/projects/osiris/osiris.html

Rubo Medical Imaging,

http://www.rubomedical.com/index.html

Hipax, http://www.hipax.de

Medicview 3D,
http://www.medicimaging.com/medicview/medicview3D.
htm

Virtual Radiography,
http://www.vrlab.umu.se/forskning/vradiography eng.shtml
SimXray, http://www.simxray.com
Virtual radiation laboratory,
http://www-personal.engin.umich.edu/~godfroy/Radiation/

hazard.html
Team HAZARD

' Unité d’Imagerie Numérique (Digital Imaging Unit)

'3 Unité d’Imagerie Numérique (Digital Imaging Unit)

61

Interim Report

BOURKE P

BLOYD C

BLOYD C

MEUNIER J
TROLLTECH

DOXYGEN

Right Hemisphere

Avid

Viewpoint corporation

MALLARD D

TEECE D

DISCREET

ADOBE

Polygonising a scalar field,
http://astronomy.swin.edu.au/~pbourke/modelling/
polygonise/

Swinburne University of Technology (Australia), 1997

Marching example program

http://astronomy.swin.edu.au/~pbourke/modelling/
polygonise/marchingsource.cpp

Roentgen And The Discovery Of X-rays

http://www.xray.hme.psu.edu/rci/ss1/ss1_2.html

http://www2.iro.umontreal.ca/~meunier

or

http://www.trolltech.com/

Doxygen

http://www.doxygen.org /

3D Exploration

http://www.righthemisphere.com

Softlmage

http://www.softimage.com

Internet browser plugins

http://www.viewpoint.com

The body scanner

http://www.technologyscotland.org/pioneering/

body body.html
Profiting from technological innovation.: Implications for
integration, collaboration, licensing and public policy

http://www.lib.uconn.edu/Economics/Teece RP (1986).pdf
3DS Max

http://www.discreet.com

Photoshop

http://www.adobe.com

62

Interim Report

APPENDIX A — DICOM file extract

0002,0000,File Meta Elements Group Len: 164
0002,0001,File Meta Info Version: 256
0002,0002,Media Storage SOP Class UID: 1.2.840.10008.5.1.4.1.1.2.
0002,0003,Media Storage SOP Inst UID:
1.2.840.113619.2.30.1.1762369857.2100.1020760049.575
0002,0010, Transfer Syntax UID: 1.2.840.10008.1.2.1.
0002,0012, Implementation Class UID: 1.3.46.670589.5.2.13
0008,0000, Identifying Group Length: 732
0008,0001,Length to End: 531856

0008,0005, Specific Character Set: ISO.IR 100

0008, 0008, Image Type: ORIGINAL\PRIMARY\AXIAL
0008,0016,S0OP Class UID: 1.2.840.10008.5.1.4.1.1.2.
0008,0018,SOP Instance UID:
1.2.840.113619.2.30.1.1762369857.2100.1020760049.575
0008,0020, Study Date: 20020507

0008,0021, Series Date: 20020507
0008,0022,Acquisition Date: 20020507

0008,0023, Image Date: 20020507

0008,0030,Study Time: 184956.000000

0008,0031,Series Time: 185459.000000
0008,0032,Acquisition Time: 185521.000000

0008,0033, Image Time: 185842.000000

0008,0050, Accession Number:

0008,0060,Modality: CT

0008,0070,Manufacturer: GE MEDICAL SYSTEMS
0008,0080, Institution Name: NEUROSCIENCES CENTRE NGH
0008,0090,Referring Physician's Name:
0008,1010,Station Name: 0OC01.0CO

0008,1030, Study Description: FOOT

0008, 103E, Series Description: 3/3 KNEES
0008,1070,Operator's Name: KM

0008,1090,Manufacturer's Model Name: HiSpeed CT/i

63

Interim Report

APPENDIX B - Image processing

These pictures come from the Jean Meunier’s web site at the University of Montréal [19]

o

Figure 38. Dilatation

f"‘-l"-’

Fod
f
)

-

&

Figure 40. Open

& -

Figure 39. Erosion
“ @@
. e @

Figure 41. Close

64

Interim Report

APPENDIX C — Windows

P I
Mg Ciess Vas 4y

Lo by

L

= it =

| =8 b e
B Famd e

g

Hgh e -
W
P it vares

% e
¥ Racsan
& Ty
ERITLr

I T Temudann

= ik

[T

'_pu-ﬂm.lq-ll L
Figure 42. The main window of the GUI

EEESSe
Tt refimg

Ty~ [r—
—_—fp— et ik 2 st el | — f———— &
—_—— bt ettt | — e ™
—_—— e e
L Frmitisd e T ikt

T Corwtwn smasn

igmar st By Qe v s of
P i s e e i T
i ok s Chch, sy A bt
B ok gl i el
v e

-0 x|

Aiet Mhasgons

Figure 43. Window used for setting the reconstruction

65

Interim Report

APPENDIX D — X-Ray GUI file format

All values designed as ‘code’ are constant values inserted in files for if X-Ray GUI files are corrupted

or not.

An unsigned char, the file version

An unsigned char, the patient code
An unsigned short, the patient id

An unsigned char, the study code
An unsigned short, the study id

An unsigned char, the series code

An unsigned short, the series id

An unsigned char, the bounding box code

An short, the minimum value along the x-axis
An short, the maximum value along the x-axis
An short, the minimum value along the y-axis
An short, the maximum value along the y-axis
An short, the minimum value along the z-axis

An short, the maximum value along the z-axis

An unsigned char, the skin object code

An unsigned int, the number of vertices of the skin object
An unsigned int, the number of triangles of the skin object
An short, the minimum value along the x-axis

An short, the maximum value along the x-axis

An short, the minimum value along the y-axis

An short, the maximum value along the y-axis

An short, the minimum value along the z-axis

An short, the maximum value along the z-axis

An unsigned char, the skin object vertices code

Floats, the vertices of the skin object (there are three floats per vertex)

An unsigned char, the skin object index code

66

Interim Report

Unsigned ints, the indexes of the skin object (there are three unsigned ints per index)
An unsigned char, the bone object normal code

Floats, the vertices of the bone object (there are three floats per normal)

An unsigned char, the bone object code

An unsigned int, the number of vertices of the bone object

An unsigned int, the number of triangles of the bone object

An short, the minimum value along the x-axis

An short, the maximum value along the x-axis

An short, the minimum value along the y-axis

An short, the maximum value along the y-axis

An short, the minimum value along the z-axis

An short, the maximum value along the z-axis

An unsigned char, the bone object vertices code

Floats, the vertices of the bone object (there are three floats per vertex)
An unsigned char, the bone object index code

Unsigned ints, the indexes of the bone object (there are three unsigned ints per index)
An unsigned char, the bone object normal code

Floats, the vertices of the bone object (there are three floats per normal)

An unsigned char, the end of file code

67

Interim Report

APPENDIX E — Use of the command line arguments

The following information is needed by the rendering program. This order is agreed by Daniel Deprez

and me. Oa, Ob, Oc and 0d is a temporary solution until we are able to read DICOMDIR file

information.

Oa dataset directory, a string (e.g. "H:/foot/dicom/")
0b filename const, a string (e.g. "IM_00" is common to IM_00005 and IM_00180)

Oc filename var first, a string (e.g. 5 - all digits following and including the first non-zero digit in
IM_00005)
0d filename var last, a string (e.g. 5 - all digits following and including the first non-zero digit in
IM_00005)

1 Patient ID, an unsigned short;
2 Study ID, an unsigned short;

3 Series ID, an unsigned short;

4 X component of the X-Ray source position, a float;
5'Y component of the X-Ray source position, a float;
6 Z component of the X-Ray source position, a float;
7 Rotation angle of the X-Ray source throw the X-axis, a float;
8 Rotation angle of the X-Ray source throw the Y-axis, a float;
9 Rotation angle of the X-Ray source throw the Z-axis, a float;

10 X component of the patient position, a float;
11 Y component of the patient position, a float;
12 Z component of the patient position, a float;
13 Rotation angle of the patient throw the X-axis, a float;
14 Rotation angle of the patient throw the Y-axis, a float;
15 Rotation angle of the patient throw the Z-axis, a float;

16 Width of the cassette, an unsigned short;
17 Height of the cassette, an unsigned short;
18 Depth of the cassette, an unsigned short;
19 X component of the cassette, a float;
20 Y component of the cassette, a float;

21 Z component of the cassette, a float;

68

Interim Report

22 Rotation angle of the cassette throw the X-axis, a float;
23 Rotation angle of the cassette throw the Y-axis, a float;

24 Rotation angle of the cassette throw the Z-axis, a float;

Before sending the parameters, the program must create 25 strings. The strings size cannot exceed
255 characters (256 with the character of end of string “\0”). The original kind of the parameters can
be float, unsigned short or string. As parameters are different kinds, the program converts variables

into a string using the “sprintf” standard C function of the “stdio” library.

The GUI can then create and execute the new child process using the “spawnl” function. It is not a
POSIX' function. It builds an array of strings compatible with the “argv[]” array (argument of the
main function of a C/C++ program) before calling the “spawn” function. The “spawn” function is part
of the POSIX standard. Another family function can create a new child process with command line
arguments; it is the “exec” function. When a call to an “exec” function is successful, the new process
is placed in the memory previously occupied by the calling process. As the calling process has no
more memory, it is not possible to come back to the GUI after launching the X-Ray renderer. Spawn
like functions create a new child process, which does not use the memory of the calling process, but

uses its own.

This code shows the different step of the creation of a new child process:

// Creation of 25 strings
char dataset_file_name [MAX_STRING_LENGHT]; // string

char patient_id[MAX_STRING_LENGHT]; // USHORT
char study_id[MAX_STRING_LENGHT]; // USHORT
char serie_id[MAX_STRING_LENGHT]; // USHORT

// Set up the 25 strings using “sprintf”
sprintf (dataset_file_name, g_p_interface->_Dataset.GetFileName ());

sprintf (patient_id, "%i", g_p_interface->_Dataset.GetPatient());
sprintf (study_id, "%i", g_p_interface->_Dataset.GetStudy());
sprintf (serie_id, "%i", g_p_interface->_Dataset.GetSerie());

// Creation of a new child process

int error_code (spawnl (_P_NOWAIT, /* The calling process does not wait
* the end of the child process.
* The two processes are
* asynchronous

' Portable Operating System Interface based on UniX

69

Interim Report

*/
child_process_file_name,
dataset_file_name,
patient_id,
study_id,

// File name

70

Interim Report

APPENDIX F — Javadoc

Documentation generated showing the class hierarchy in the DiLib library

DiLib Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

¢ DiDataset

¢ DiFile
o DiDicomdirFile
o DiDicomFile

¢ DiRoi

Documentation generated showing the inheritance for the DiFile class. The classes DiDicomdirFile
and DicomFile inherit of the virtual calss DiFile.
Inheritance diagram for DiFile:

Documentation generated showing the description of the Open method of the class DiFile.
virtual short DiFile.Open (char * aFileName=0) [virtual]

Open a dicom file

Parameters:
a string: the name of the dicom file

Returns:

a short: the file number reference or an error code

Reimplemented in DiDicomFile.

71

Interim Report

The following code has been used to generate the previous documentation of the Open method of the

class DiFile. It starts by /** as the javadoc style. @param and @return are interpreted to know the
parameters of the method and its returned value.

/** __

* Open a dicom file

* *

* @param a string: the name of the dicom file

* @return a short: the file number reference or an error —%*
code

x - */

virtual inline short Open (const BaString& aFileName)
{

_FileName = aFileName;

return Open();

72

Interim Report

APPENDIX G — Test support materials

Getting started Guide

1. Launch the program and open a dataset
- In the home directory of X-Ray GUI program, there is a file called “XRayGUI.exe”. Double
clicking on it will launch the X-Ray GUI program.

File. Cazzette “iew ‘Windows Help

- Choose the dataset by using the keyboard shortcut Ctrl+O or

using the “File->Open” menu. Hngh k. Cild
Then, choose the file containing the objects reconstructed Close Chl+C
from CT-scanned data “foot s5 b5.xrg”. save L5
Save fs
[t Crl+Q
I e

2. Generalities

. Vs Pragonct - Franch Vilal WS CALTA 2000
- When the file is loaded, you are able to - =
see this window. B
w;_m » 1st view 3rd view
. . ~ :':\;““u:-
- Double-click with the left button on a
view to fill the window with it. —
|)
[2homen
. . . [% Turaion
- Double-click again to restore 4 views -
™ Sesich thirvioren
in the window.
2nd view 4th view
- Select a cassette size using the
“Cassette” menu.
[I |

- The cassette bounding box is purple,
the patient bounding box is green and
the X-ray source is red, blue and yellow.

A selected object is white.

- Zoom in/out by pressing the ‘x’ key and by pressing the left button of the mouse and moving the

mouse up and down.

73

Interim Report

- Restore the default view states using the “View” menu.

- Rotate selected object by pressing the “R” key, pressing a mouse button and moving the mouse.

The left button corresponds to a rotation through the local x-axis of
the object (red line).

The middle button corresponds to a rotation through its y-axis (green
line).

The right button corresponds to a rotation through its z-axis (blue

line).

3. Top/Bottom, Front/Back and Left/Right views

- Move the camera by pressing the ‘x’ key and by pressing the right button of the mouse and moving
the mouse.

- Select an object in a view by clicking with the left button on this object.

- Move any selected object by pressing the right button of the mouse and moving the mouse.

- Rotate any selected object by pressing the middle button of the mouse and moving the mouse.

4. Perspective view

- The selection of an object is a loop:

No object -> Patient -> Cassette -> X-Ray emitter -> No object

You can change of selected object with a double right-click.

- Move up/down/left/right any selected object by pressing the “T” key, pressing the left button and

moving the mouse.

- Move forward and backward selected object by pressing the “T” key, pressing the right button and

moving the mouse.

74

Interim Report

Tutorial

- Load the “foot_s5 b5.xrg” file.

Zoom in the (Fill the view with the foot).

Press and hold the ‘R’ key and use left mouse button to rotate the foot
around the x-axis(its red line). Rotate through 90 degrees
(until the top of the foot is visible).

Zoom out the top view (Fill the view with 3 objects (cassette, patient and X-Ray source)) by using

“View->Reset->Left Top” menu. This action restores the default view setting.

In the , select the cassette with the mouse.

Move it to the left of the foot.

75

Interim Report

Press and hold the ‘R’ key and use left mouse button to rotate the
cassette around the y-axis(its green line). Rotate through 90 degrees

(until the top of the foot is visible).
Rotate the cassette with an angle of 90 degrees through its y-axis

(Press the ‘R’ key. Keep it down, Press the middle mouse button and

move the mouse).

Select the X-Ray source with the mouse.

Move it to the right of the foot.

In the , align the cassette and the X-Ray emitter with the foot.

In the , Rotate the X-Ray emitter with an angle of -90 degrees through its z-axis (blue line).

Press the ‘“+’ key to see if the X-Ray beams intersect the cassette and the foot.

76

Interim Report

You should get this final result:

Ferspective

77

Interim Report

Test

Try to get the same result. For the foot, only rotations (no translations).

78

Interim Report

79

Interim Report

12 questions

0 Cannot be worse
1 Bad / Bad idea / Difficult to use

2 Quite good / Quite good idea / Quite easy to use
3 Good / Good idea / Easy to use
4 Very good idea / Very user-friendly

1 | The selection of objects in the orthographic views
(top/bottom/front/back/left/right views)

2 | The selection of objects in the perspective view

3 | The translation of objects in the orthographic views
(top/bottom/front/back/left/right views)

4 | The translation of objects in the perspective view
The rotation of objects in the orthographic views
(using the only the middle mouse button)
(top/bottom/front/back/left/right views)

6 | The rotation of objects in the orthographic views
(using the keyboard shortcut ‘R’ and one mouse button)
(top/bottom/front/back/left/right views)

7 | The rotation of objects with the link between mouse button and axis
(using the keyboard shortcut ‘R’ and one mouse button)

8 | Zoom in/out, is it easy

8 | Zoom in/out, is it useful

9 | The idea of the change of the size of the line, which indicates the X-
Ray direction, to see if the X-Ray beams intersect or not the patient
and the cassette

10 | The link between objects colour and the kind of objects
(e.g. green bounding box for the patient, purple for the cassette, white for selected object)

11 | The use of bounding box, is it useful

12 | In the perspective view, is the room (walls, ceiling and ground)

helpful to see relative position of objects?

Any comments:

What can be done to make a better program?

80

