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Abstract

This paper presents a method to take advantage of artificial evolution in positron emission
tomography reconstruction. This imaging technique produces datasets that correspond to the
concentration of positron emitters through the patient. Fully 3D tomographic reconstruction
requires high computing power and leads to many challenges. Our aim is to reduce the
computing cost and produce datasets while retaining the required quality. Our method is
based on a coevolution strategy (also called Parisian evolution) named “fly algorithm”. Each
fly represents a point of the space and acts as a positron emitter. The final population of flies
corresponds to the reconstructed data. Using “marginal evaluation”, the fly’s fitness is the
positive or negative contribution of this fly to the performance of the population. This is also
used to skip the relatively costly step of selection and simplify the evolutionary algorithm.

1 Introduction
Fully 3D tomographic reconstruction in nuclear medicine requires high computing power and leads
to many challenges. Indeed, tomographic reconstruction is an ill posed inverse problem: a solution
cannot be assumed to exist (e.g. in extreme cases of excessive noise), and a unique solution does
not necessary exist.

Conventional reconstruction methods are analytical or based on statistical analysis, such as the
maximum-likelihood expectation-maximization (ML-EM)1 [12] or the ordered subset expectation-
maximization (OS-EM) [6] algorithms. A broad overview of reconstruction algorithms in nuclear
medicine can be found in [7]. The trend today is to use more general methods that can integrate
more realistic models (application-specific physics and data acquisition system geometry). To
date, the use of such methods is still restricted due to the heavy computing power needed.

Evolutionary algorithms have proven to be e�cient optimisation techniques in various domains
[10], including medicine [11] and medical imagery [2, 4, 15]. However their use in tomographic
reconstruction has been largely overlooked. In a previous paper, we showed that a cooperative
coevolution strategy (also called Parisian evolution) called “fly algorithm” [8] could be used in
single-photon emission computed tomography (SPECT) reconstruction [3]. Here, each fly corres-
ponds to a 3D point that is emitting photons. The evolutionary algorithm is then used to optimise
the position of flies. After convergence, the set of flies corresponds to the reconstructed volume.

However, positron emission tomography (PET) – the other main tomographic technique in
nuclear medicine – has taken over SPECT in routine clinical practice. Although the underlying

1See Section on “Acronyms” for a list of acronyms.
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physics and the design of imaging systems in SPECT and PET are di�erent, it is possible to use
a reconstruction method that is similar to the one that we initially proposed for SPECT data. In
this case, PET raw data needs to be converted into sinograms (see Fig. 4(b) for an example of
synthetic sinogram). This pre-processing step introduces sampling that constrains the resolution
of the reconstructed images and most of the input sinogram is empty. During the reconstruction
using the evolutionary algorithm, it is di�cult to take into account physics and the geometrical
properties of the imaging system due to this intermediate data representation, and also only a few
pixels of the simulated images will contain useful information. Moreover, the issue regarding the
memory usage that has been identified in [3] remains. This is therefore not straightforward to
achieve an e�cient fully 3D reconstruction in PET. In this paper we propose a new approach to
overtake the disadvantages presented above. It makes use of a simplified geometry model that still
matches the acquisition system properties. Our long term goal is to include Compton scattering
(the dominant physical perturbation in the input data) correction in the evolution loop to further
improve the quality of the final reconstructed image.

The following section gives an overview of the context and objective of this study. Our meth-
odology is described in Section 3. The results and performance of our reconstruction method
is presented in Section 4. The last section discusses the work that has been carried out and it
provides directions for further work.

2 Context and Objectives
Nuclear medicine [1] appeared in the 1950’s. Its principle is to diagnose or treat a disease by
administering to patients a radioactive substance (also called tracer) that is absorbed by tissue
in proportion to some physiological process. This is the radiolabelling process. In the case of
diagnostic studies, the distribution of the substance in the body is then imaged. It is generally
a functional form of imaging because the purpose is to obtain information about physiological
processes rather than anatomical forms and structures. When a pathology occurs, the meta-
bolism increases and there are more tracer molecules in the pathology area. Consequently, the
radioactivity also increases.

There are two classes of techniques to produce 3D data in nuclear medicine: SPECT and PET.
They allows 3D reconstruction of the distribution of the tracer through the body. In SPECT,
a gamma emitter is used as radioactive tracer. Similarly to conventional computed tomography
(CT) [9], multiple 2D projections are recorded at successive angles. It is followed by a mathematical
reconstruction. The main limitations include the finite spatial resolution and the sensitivity of
detectors, physical e�ects (such as absorption, Compton scattering, and noise), long exposure
times, and accuracy of the reconstruction. In PET, a positron emitter is used as radionuclide for
labeling rather than a gamma emitter. After interactions, a positron combines with an electron
to form a positronium, then the electron and positron pair is converted into radiations: this is
the annihilation reaction. It produces two photons of 511 keV emitted in opposite directions.
Annihilation radiations are then imaged using a system dedicated to PET. This system operates
on the principle of coincidence, i.e. the di�erence in arrival times of the photons of each pair of
detected photons and by knowing that each annihilation produces two photons emitted in exactly
opposite positions.

Our previous attempt to use cooperative coevolution was in SPECT [3]. It is based on the
fly algorithm [8]. Each fly represents a point of the patient 3D space and it acts as a radioactive
emitter. The final population of flies corresponds to the tracer density in the patient who is
scanned, i.e. the reconstructed data. It uses a “marginal fitness” metrics based on the “leave-
one-out cross-validation” method to evaluate the contribution of each fly as it will be explained in
detail in Section 3.1. This metrics gives the contribution (positive or negative) of a given fly with
respect to the whole population. In SPECT, the input data corresponds to raw 2D projections
at successive angles around the patient that can be formated into a sinogram format. However,
to speed up the reconstruction time and reduce the amount of memory needed by the algorithm,
only 3% of the input data is used at a time by a fly during the reconstruction. Indeed, for each
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fly, only four orthogonal projections are simulated.
This SPECT reconstruction approach, based on artificial evolution, gave promising results.

However, PET is considered to be the gold-standard tomographic technique in nuclear medicine
due to its higher sensitivity. The section below shows how to adapt the fly algorithm more
e�ciently in this case, taking into account the specificity of PET data.

3 Reconstruction Method
3.1 Artificial Evolution Algorithm For PET
In [3], we showed that, when we were addressing the SPECT problem, if we defined the fitness
of a fly as the consistency of the image pattern it generates, with the actual images, it gave an
important bias to the algorithm with a tendency of the smaller objects to disappear. This is
why we then introduced marginal evaluation, where the fitness of a given fly is not evaluated in
itself, but as the (positive or negative) contribution to the likeness of the image produced by the
complete population of flies, with the current image.

In other terms, to evaluate a given fly, we first evaluate the fitness of the whole population -
the distance between the total illumination pattern created by all the flies, to the actual image -
then evaluate the fitness of the same total population without the fly that is being evaluated, and
calculate the di�erence:

fitnessm(i) = fitness (population ≠ {i}) ≠ fitness (population) (1)

with fitnessm(i) the marginal fitness of a given fly, fitness (population ≠ {i}) the fitness metrics of
the population without the fly that is being evaluated, and fitness (population) the fitness metrics
of the whole population of flies.

This particular method to calculate fitnesses does not induce any extra computation load.
Each time a new fly is created, a simulation is done in order to calculate its illumination pattern,
which is kept in memory. Each time a fly is destroyed or created, the total illumination pattern
is updated. When a fly has to be evaluated, the global fitness is readily calculated using the total
illumination pattern, and the global fitness “minus one” is calculated the same way using the
“total minus one” illumination pattern.

This fitness calculation method is then integrated into an evolution strategy scheme (see Fig-
ure 1). The population of flies is first initialised randomly. In the test experiments shown in
this paper, the flies are initialised inside a cylinder contained between the sensor crystals. In real
applications, the actual shape of the body may be used. In the second part of the initialisation,
in the case of SPECT, a fly produces an adjustable number of photons to compute its own image
pattern. Once each pattern is computed, the sum of these patterns is stored as the population’s
pattern and the population’s global fitness is calculated by comparing the pattern to the actual
image. In the case of PET, each fly is producing an adjustable number of annihilation events.
The result of this simulation consists of a list of pairs of detector identification numbers that
correspond to annihilations (see Section 3.3 for details). There begins the evolution loop. It will
aim to optimise the position of flies with respect to the input data, e.g. using a mutation operator
to modify the location of a given fly. An interesting point is that our method to calculate the
fitness delivers negative values for flies with a negative contribution and positive values otherwise.
Therefore it was attempting to skip the classical selection step and use a fixed threshold - zero! -
as the only selection criterion. Thus we built a steady state evolution strategy, where in order to
choose the fly that has to be replaced, we draw flies randomly until a fly is found with a negative
fitness. Then it is eliminated and replaced by the application of evolutionary operators to a parent
fly chosen the same way but with a positive fitness.

3.2 Sinogram Mode
During the annihilation, two photons of 511 keV are emitted in opposite directions. Photons of
a single pair are called coincidence photons. When two photons are detected within a predefined
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Figure 1: Reconstruction algorithm.

time window 2· , the PET imaging system records which crystals have been activated, i.e. the
position of the photons within the imaging system.

It is possible to convert the coincidence data into a sinogram format [5]. This is convenient
as it enables the use of standard reconstruction methods that have been originally developed for
CT or SPECT. Fig. 2 shows how this conversion can be achieved. When an annihilation event
occurs, two photons are emitted in coincidence at 180 degrees. Two detectors are activated almost
at the same time. The line between the activated detectors is called a “line of response” (LOR).
To generate a sinogram, sampling is needed along:

• the horizontal axis of the sinogram that matches the minimum distance between a LOR and
the centre point of the system (see distance r in Fig. 2),

• the vertical axis of the sinogram that matches the angle between a LOR and the horizontal
plane of the system (see angle – between the LOR and the dash line in Fig. 2).

Then it is possible to use a reconstruction method that is similar to the one that we initially
proposed for SPECT data. However, we saw that using sinograms in PET introduces drawbacks
(such as sampling, di�culties to take advantages of physics and geometrical properties of the
imaging system, memory usage, etc.) and that, therefore, a new approach dedicated to PET is
required.

3.3 LOR Mode
It is possible to model the actual geometry of the imaging system to directly use the coincidence
data without any conversion. In practice, PET imaging systems are made of blocks of collinear
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Figure 2: Conversion from coincidence events to 2D sinograms.

detectors [14]. These blocks are located circularly to constitute a cylinder. Each crystal is identified
by a unique identification number. Note that several cylinders of blocks are used in a PET scanner.

Here, a fly acts as a positron that will emit random pairs of coincidence photons. The number
of pairs per fly is a parameter that can be tuned. For each pair of photons, a direction is picked
using uniformly distributed random points on the surface of a unit sphere. It gives the direction
of the first photon of the pair, whilst the opposite vector gives the direction of the other photon.
The fly’s position and the photon’s direction define a line. When this line intersects two crystals,
a LOR is detected. Using e�cient ray-tracing techniques (ray-tracing is widely documented in the
literature, and a complete overview can be found in 3D Computer Graphics by A. Watt [16]), it
is possible to detect intersections. To speed up computations, the PET scanner is embedded into
a bounding open cylinder. If one of the rays corresponding to a pair of photons does not intersect
the bounding cylinder, then no LOR will be detected. In this case, intersections between the rays
and the crystals are skipped. Fig. 3 shows a simplified PET system with simulated LORs.

To evaluate a fly’s contribution, the concept of marginal fitness is used once again (see Eq. 1).
The fitness metrics corresponds to a distance measurement between simulated data and the actual
data given by the imaging system (note that data must be normalised). A LOR needs to be
modelled using a pair of detector identification numbers. LORs cannot be e�ciently accumulated
in 2D images. Due to the fitness function, two lists are needed, one for the actual data, and
one for the population data. The number of times a given LOR is encountered is stored in
the corresponding record. Actual and simulated data are e�ciently stored into indexed lists
(the standard template library (STL) provides such containers [13]). The pair of identification
numbers is used as the key of each record in the lists. It speeds up the memory access to records and
reduces memory usage to its minimum. Indeed, empty records, when a pair of crystal identification
numbers do not correspond to a LOR, are not stored. Also, each fly needs to store the LORs that
it has generated. In this case, the fitness can be computed using a distance measurement between
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Figure 3: Using a simplified PET system geometry.

the lists. For e�ciency reasons, we have chosen the City Block Distance metrics (sometimes called
Manhattan Distance):

d(LORr, LORs) =
ÿ

|LORr(key).counter ≠ LORs(key).counter| (2)

with d(LORr, LORs) the city block distance between LORr and LORs, the set of LORs for the
real data and the simulated data respectively, and counter is the number of times that a given
key appears in the LOR set. To compute Eq. 1, LORs corresponds either to the set of LORs of
the whole population of flies or the set of LORs of the population without the fly that is being
evaluated.

4 Results and Validation
This section presents the results obtained using synthetic data to validate the usefulness and
accuracy of our novel PET reconstruction approach. First, we compare images reconstructed from
sinograms using our algorithm with reference images computed with an OS-EM implementation.
Then, we evaluate images reconstructed from LOR data with respect to theoretical values.

4.1 Sinogram Mode
Let us consider the set up presented in Fig. 4. It is made of two spheres whose radius is 2.5 mm.
The radioactivity of one of them is twice as great as the other one’s activity.

Fig. 5 shows examples of tomographic slices reconstructed using our evolutionary method and
the OS-EM algorithm. Method 1 consists in incrementing the voxel value of the reconstructed
volume for each fly that lies in that voxel. Method 2 consists in accumulating the marginal
fitness of each fly whose fitness is positive and that lies in that voxel. The final volume data is
then normalised between 0 and 1. This normalisation step is needed to compare results with the
volume that has been produced using the OS-EM algorithm. Reconstructed volumes appear to be
visually similar to the reference volume.

To further compare the results, profiles are extracted at the centre of each bright area in
Fig. 5. Fig. 6 shows that these profiles are relatively close. In particular, the di�erence of intensity
between the two bright areas is preserved in the reconstructed slices.
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Figure 5: Tomographic slices reconstructed using Fig. 4(b).

4.2 LOR Mode
4.2.1 Test 1

Nine spheres with various radius and radioactivity are simulated in this test. Fig. 7 shows both the
reconstructed and real data. Reconstructed volumes appear to be visually similar to the reference
volume.

Once again, to further compare the results, profiles are extracted at the centre of each bright
area in Fig. 7 (note that a mean filter is used to reduce the noise level). Fig. 8 shows that these
profiles are relatively close. The profiles of the upper bright areas will be symmetrically similar to
those of the lower areas. The radius of each sphere accurately matches the corresponding radius in
the reference volume. Also, the di�erence of radioactivity is preserved in the reconstructed slices.
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Figure 6: Profiles extracted from Fig. 5.

(a) Method 1. (b) Real data. (c) Method 2.

Figure 7: Tomographic slices.
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Figure 8: Profiles extracted from Fig. 7.
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4.2.2 Test 2

Two cubes are simulated in this test. Fig. 9 shows the raw data after tomographic reconstruction
and the real data. Likewise, reconstructed volumes appear to be visually similar to the reference

(a) Method 1. (b) Real data. (c) Method 2.

Figure 9: Tomographic slices.

volume. Using the same method, profiles are extracted at the centre of each bright area. Fig. 10
shows that the cube lengths accurately match the real values.
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5 Discussion and Conclusion
In this paper, we show that Evolutionary Computation is a promising technique to solve the
usually computationally expensive problem of reconstructing 3D images from PET data. Whilst it
is possible to use sinograms in PET, this option is not acceptable. Instead, a simplified geometrical
model of PET scanner is used to simulate annihilation events. To date, the photons’ trajectory
is simulated without interaction with matter. This approach is closer to reality and it gives
promising results on synthetic data. Also, more realistic physics simulations could be added to
correct Compton scattering.

Another point we have raised is that when using “marginal evaluation”, an individual’s fitness
is not calculated in an absolute manner, but as the positive or negative value of the contribution
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of this individual to the performance of the complete population. A consequence is that the
relatively costly step of selection may be skipped and the evolutionary algorithm be simplified.
In addition, in some cases this may even result in a stopping criterion, if at some stage all the
individuals have got a positive fitness value, which means they are all contributing positively to
the reconstruction. This should be applicable into other areas of evolutionary computation and
coevolution, not necessarily restricted to medical imaging, whenever the marginal fitness paradigm
is used.

List of Acronyms
CT computed tomography
LOR line of response
ML-EM maximum-likelihood expectation-maximization
OS-EM ordered subset expectation-maximization
PET positron emission tomography
SPECT single-photon emission computed tomography
STL standard template library
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