
The definitive version is available at http://http://diglib.eg.org/.

F.P. Vidal, M. Garnier, N. Freud, J.M. Létang, and N.W. John: Simulation
of X-ray Attenuation on the GPU. In Proceeding of TPCG 2009 - Theory and
Practice of Computer Graphics, pp. 25-32, 17-19 June 2009 Cardiff, UK. ISBN
978-3-905673-71-5. Winner of Ken Brodlie Prize for Best Paper

DOI: 10.2312/LocalChapterEvents/TPCG/TPCG09/025-032

ACM CCS: I.3.5 Computer Graphics: Physically based modeling; I.3.7 Computer
Graphics: Raytracing; J.2 Computer Applications: Physics.
Keywords: Three-Dimensional Graphics and Realism, Raytracing, Physical Sci-
ences and Engineering, Physics.

@inproceedings{Vidal2009TPCG,
Author = {F. P. Vidal and M. Garnier and N. Freud and

J. M. Létang and N. W. John},
Title = {Simulation of X-ray Attenuation on the GPU},
Booktitle = {Proceeding of TCPG’09 - Theory and Practice of Computer

Graphics},
Month = jun,
Year = 2009,
Annotation = {Cardiff, UK, 17~--~19 Juin 2009},
Pages = {25-32},
Publisher = {Eurographics},
doi = {10.2312/LocalChapterEvents/TPCG/TPCG09/025-032},
Abstract = {In this paper, we propose to take advantage of computer

graphics hardware to achieve an accelerated simulation of
X-ray transmission imaging, and we compare results with a fast and
robust software-only implementation. The running times of the GPU
and CPU implementations are compared in different test cases. The
results show that the GPU implementation with full floating point
precision is faster by a factor of about 60 to 65 than the CPU
implementation, without any significant loss of accuracy. The
increase in performance achieved with GPU calculations opens up
new perspectives. Notably, it paves the way for physically-realistic
simulation of X-ray imaging in interactive time.},

}

http://http://diglib.eg.org/
http://dx.doi.org/10.2312/LocalChapterEvents/TPCG/TPCG09/025-032

Simulation of X-ray Attenuation on the GPU
F.P. Vidal 1,*, M. Garnier 2, N. Freud 3, J.M. Létang 3, and N.W. John 4

1 Bangor University, Dean Street, UK,
2 INSA-Rennes, France

3 INSA-Lyon, France
* Now at INRIA - Saclay–Île-de-France, France

Abstract

In this paper, we propose to take advantage of computer graphics hardware to achieve
an accelerated simulation of X-ray transmission imaging, and we compare results with a
fast and robust software-only implementation. The running times of the GPU and CPU
implementations are compared in different test cases. The results show that the GPU
implementation with full floating point precision is faster by a factor of about 60 to 65
than the CPU implementation, without any significant loss of accuracy. The increase in
performance achieved with GPU calculations opens up new perspectives. Notably, it paves
the way for physically-realistic simulation of X-ray imaging in interactive time.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 Computer Graphics:
Physically based modeling; I.3.7 Computer Graphics: Raytracing; J.2 Computer Applica-
tions: Physics.

Keywords: Three-Dimensional Graphics and Realism, Raytracing, Physical Sciences and
Engineering, Physics.

1 Introduction
The simulation of X-ray imaging techniques such as radiography or tomography is extensively
studied in the physics community and different physically-based simulation codes are available.
Deterministic methods based on ray-tracing are commonly used to compute direct images (i.e.
images formed by the X-ray beam transmitted without interaction through the scanned object)
of computer-aided design (CAD) models. Ray-tracing provides a fast alternative to Monte Carlo
methods [4]. Such programs are very useful to optimize experiment parameters, to conceive
imaging systems, or to take into account non-destructive testing during the design of a mechanical
structure [1, 10]. However, even with fast ray tracing algorithms, the simulation of complex X-ray
imaging systems still requires very long computation times and is not suitable for an interactive
use as would be required in a medical training tool.

Physics-based simulations are traditionally performed on CPUs. However, there is a growing
interest for general-purpose computation on GPUs (GPGPU) and this has been an active area of
research some time [13].

In this paper, we present an efficient simulation of X-ray attenuation through complex objects,
that makes use of the capability improvement of today’s graphics cards. We also compare the per-
formance of this GPU approach with an efficient software-only implementation. To our knowledge
this is the first GPU-based X-Ray attenuation simulation. Such a simulation tool can be deployed
in medical virtual interactive applications for training fluoroscopy guidance of needles, catheters
and guidewires [18], and can also be useful to speed-up current physics-based simulation where
computational accuracy is critical.

The following Section gives an overview of the context and objectives of this work. The
implementation of our simulation scheme is described in Section 3. The results and performance
comparisons with a software-only implementation are given in Section 4. The last section discusses
the work carried out and provides directions for further work.

2 Context and objectives
To date, there are two different kinds of X-ray simulation algorithms:

• probabilistic methods, based on Monte Carlo trials;

• determinist or analytic methods, based on ray-tracing (these include the resolution of the
Boltzmann transport equation).

Monte Carlo simulations can produce very accurate X-ray images, but they are computationally
expensive, which prevents their use in any interactive applications. For example, to simulate an
image consisting of 106 pixels, with a noise level of 1%, at least 1010 photons have to be cast
(depending on the attenuation in the object). This would take days of computation time if using
only a single PC. This time can be reduced using a cluster of PCs, a supercomputer, or Grid
computing. Pasciak et al. show the possibilities of performing Monte Carlo simulations applied
to radiation transport using a field-programmable gate array (FPGA) [14]. However, so far no
realistic object geometry is implemented. One of the problems encountered is the fact that FPGAs
cannot be programmed using standard programming languages, and low level design has to be
used at the gate level.

Alternatively, the ray-tracing principle has been adapted to X-ray simulation [7, 4]. Here,
all intersections between a ray and an object have to be considered and radiation attenuation is
computed by considering the thickness penetrated by the ray going through the object charac-
terized by its density and attenuation coefficient. The 3D scene is typically made up of objects
described by triangle meshes. The main reason to use triangle meshes is to make the render
process fast as many algorithms in real-time 3D graphics have been developed for such geometry
representation, including polygon clipping and filling, etc. and also the classic Z -buffer algorithm
to remove hidden faces. A modified version of the Z -buffer, known as the L-buffer (for length
buffer), can be used to store the length of a ray crossing a given 3D object [4]. The simulation
of radiographic images from CT data sets has been also reported [7, 9]. More recently, volume
rendering by ray-casting has been adapted to the realistic simulation of X-rays in a virtual reality
environment [12]. Ray-casting can also be used to implement a hybrid determinist/probabilistic
approach to compute the dose deposited in cancerous and healthy tissues during radiotherapy
treatment [6]. In this case, each voxel corresponds to a cube characterized by its attenuation and
energy-absorption coefficients. Using this approach, the attenuation of the incident X-ray beam is
computed for each voxel traversed. Laney et al. proposed a GPU simulation of based on volume
rendering of unstructured data [8]. Using a 3D texture, ray-tracing through voxel data is also
possible on GPU to simulate fluoroscopic images [17]. In this method, voxels are processed as par-
allelepiped boxes. Yan et al. adapted GPU volume rendering by ray-casting to generate digitally
reconstructed radiographs (DRRs) for image guided radiation therapy (IGRT) [20]. The original
ray casting algorithm creates a high quality image by casting a ray for each pixel into the volume
and compositing the light reflected back to the viewer from a set of samples along the ray [11].
An alternative adaptation of GPU volume rendering to reconstruct DRRs is splatting [16]. In
splatting, voxels are “thrown” at the image in a forward projection, forming a footprint, and the
result is accumulated in the image plane [19]. The previous approaches to simulate X-ray images
using GPU implementation all make use of volume rendering.

The hypothesis of this work is that using GPUs can provide the real-time simulation of X-ray
imaging techniques from surface models and that the simulated results still have all the required
numerical accuracy. As the core building block of this type of simulation is the ray tracing
algorithm, the work is focused on its implementation using GPUs and comparison with a CPU

2

implementation of the same method, described by Freud et al. [4]. The scope of the validation of
our GPU implementation is limited to the assessment of the potential of GPUs to accelerate X-
ray imaging simulation and to provide accurate results. In this paper, we consider test cases with
a point source of monochromatic X-rays, and homogeneous objects with triangle meshes. Only
the directly transmitted photons are simulated, using the X-ray exponential attenuation law.
Physically more realistic situations can be simulated in a straightforward manner by introducing
additional loops, to take into account polychromatic X-rays or focal spots causing geometric
unsharpness [2]. The simple case studied in this work also constitutes the core calculation for more
complex simulations involving emission of secondary radiation, such as scattered or fluorescence
photons [5], or emission of γ photons by radiotracers in nuclear medicine applications.

3 Simulation algorithm
3.1 Attenuation law
The attenuation law, also called the Beer-Lambert law, relates the absorption of light to the proper-
ties of the material through which the light is travelling. The integrated form for a monochromatic
incident X-ray beam (i.e. all the incident photons have the same energy) is:

Nout(E) = Nin(E)× e
(

−
∫
µ(E,ρ(x),Z(x))dx

)
(1)

with Nin(E) the number of incident photons at energy E, Nout(E) the number of transmitted
photons and µ the linear attenuation coefficient (in cm-1). µ can be seen as a probability of
interaction by unit length. It depends on: i) E - the energy of incident photons, ii) ρ - the
material density of the object, and iii) Z - the atomic number of the object material.

3.2 Overview
Specific algorithms can be implemented as shader programs that will be executed directly on the
GPU to replace the parts of the fixed graphics rendering pipeline [15]. A shader program is twofold
i) a vertex shader (or vertex program) that substitutes major parts of the vertex operations of the
fixed function of the geometry processing unit, and ii) a fragment shader (or fragment program)
that substitutes major parts of the fragment operations of the traditional fixed function of the
rasterization unit. Such programs are written in a shading language such as the OpenGL shading
language (GLSL) by the OpenGL Architecture Review Board. More recently Nvidia released
CUDA technology to use the standard C language to implement programs that run directly on
the graphics processor without the need of a graphics Application Programming Interface (API).

The algorithm presented below has been implemented using GLSL. Figure 1 shows the simu-
lation pipeline. The principle of computing direct images is to emit rays from the X-ray source to
every pixel of the detector. For each ray, the total path length through each object is determined
using geometrical computations. Finally, the attenuation of X-rays for a given pixel is computed
using the recorded path lengths and X-ray attenuation coefficients. Eq. 1 can be written as follows:

Nout = Nin × exp
(
−
i<objs∑
i=0

µ(i)Lp(i)
)

(2)

with objs the total number of objects and Lp(i) the path length of the ray in the ith object. It
can be decomposed to illustrate the different rendering passes:

1. compute and store the path length of every object, i.e. Lp(i) in Eq. 2,

2. make use of the first pass to compute
∑
i µ(i)Lp(i) in Eq. 2,

3. make use of the second pass to compute the number of transmitted photons using the
attenuation law.

3

Initilisation of OpenGL components(FBOs, textures, shaders)
For each simulated X-ray image

For each object(i)
Clear(FBO (Lp(i)))

Compute(FBO (Lp(i)))

Update(FBO (
∑

µ(i)Lp(i)))(make use of FBO (Lp(i)))
Compute(FBO (Nin ∗ exp (−

∑
µ(x)Lp(x))))(make use of FBO (

∑
µ(x)Lp(x))

Clear(FBO (
∑

µ(i)Lp(i)))

Figure 1: Pipeline to compute the X-ray attenuation.

4

Multi-pass rendering algorithms are usually implemented using a 2D texture attached to a frame-
buffer object (FBO), a relatively new extension of the OpenGL API. This makes it possible to
render the 3D scene into a framebuffer that is not displayed but saved into a 2D texture. For
example, the effect is that the L-buffers computed during the first rendering pass will never be
written to the screen framebuffer. Using a texture attachment, the result of that rendering pass is
stored into a 2D texture. During the second rendering pass, a rectangle of the size of the detector
is displayed making use of this texture to compute

∑
i µ(i)Lp(i) in Eq. 2. Similarly, during the

final rendering pass, a rectangle of the size of the detector is displayed making use of this texture
to compute the X-ray attenuation. Storing intermediate rendering passes in textures attached to
FBOs is a compulsory stage.

Floating point precision is necessary in the L-buffer, and this can be obtained via off-screen
rendering (floating point texture attached to a FBO).

Finally, displaying the results of the simulation is not always necessary. For example, one
application is the optimization of experimental parameters in the imaging chain. For this purpose,
it is necessary to simulate large series of images with no need to visualize every image. The X-ray
attenuation image is therefore stored as a floating point texture attached to a FBO.

3.3 Computation of path length
To evaluate Eq. 4, a shader program is used to compute the L-buffer for every object (Lp(i)).
The result is stored in FBO (Lp(i)). The X-ray source and detector parameters are taken into
account using the OpenGL projection and modelview matrices: the projection matrix is set to
match the X-ray detector’s geometrical properties and the modelview matrix is set so that the
camera position matches the X-ray source position (see Figure 2).

The naive approach to compute the path length (Lp) of the ray in objects consists of determ-
ining and sorting the intersection points. This can be handled using the well-known depth-peeling
technique [3], that is used to render semi-transparent polygonal geometries without sorting poly-
gons. However this is a multi-pass technique, which is a computational overhead. To efficiently
perform path length computations, we use the algorithm presented by Freud et al for GPU pro-
gramming. This method is more effective in our application as it only requires a single pass and
no intersection ordering is needed. By convention in OpenGL, triangles of a mesh are described
so that their respective normal vectors are outward. Consider the geometry setup described in
Figure 3. This is a 2D representation of a scene made up of a disk in which a rectangular hole
has been made. Let µd be the attenuation coefficient of the disk. In this case, the path length is
given by:

Lp = (d2 − d1) + (d4 − d3) (3)

where d1 to d4 are the distances from the X-ray source to the successive intersection points of the
ray with the triangle mesh. We can observe in Figure 3 that the ray penetrates into the disk when
the dot product between viewVec and Ni, the normal of the triangle at the intersection point,
is positive. Conversely, the ray leaves an object if the dot product between viewVec and Ni is
negative. The path length of the ray in a given object can be written as follows:

Lp =
∑
i

−sgn(viewVec ·Ni)di (4)

where i refers to the ith intersection found in an arbitrary order, di is the distance from the X-ray
source to the intersection point of the ray with the triangle, sgn(viewVec ·Ni) stands for the sign
of the dot product between viewVec and Ni. This dot product and di must be computed for
each intersection point. These operations can be efficiently achieved on the GPU using a fragment
program. During the rendering stage, hidden surface removal algorithms such as Z -buffer and
back-face culling are disabled so that every triangle of the polygon mesh is taken into account. In
the vertex program, we first compute the viewing vector (viewVec). The position of the vertex
being handled by the geometry processing unit is stored and will be used later in the fragment
program to compute the distance of the intersection to the X-ray source. The normal vector of the

5

Virtual detector

X−ray source

scanned object

CAD model of the

Figure 2: Radiographic simulation.

Image plane

X−ray source

d4

d3

d2

d1

viewVec

µd
Nin

Nout

N4

N3

N1

N2

Figure 3: Principle of the computation of path length.

6

vertex is stored and will be automatically interpolated to be used later in the fragment shader. In
the fragment shader, we evaluate the sign of the dot product between viewVec and the normal
vector (Ni). Note that the calculation of Lp using Eq. 4 raises robustness issues, notably when rays
encounter triangle edges or vertices, or when the normal vector Ni is perpendicular to the viewing
direction viewVec. These issues are addressed in [4] in the case of a CPU implementation, and
we propose a method to address these on the GPU (see Section 3.5).

To evaluate Eq. 4, fragment values computed from overlapping intersections at a given pixel
of the detector (i.e. intersection points found along the corresponding ray) must be added to each
other into the framebuffer. In practice the current value that is computed by the fragment program
needs to be combined with the value that is already in the framebuffer. This operation is known as
blending. It is not possible to perform the blending operation within the fragment program alone
because a fragment program does not give any access to the current value of the fragment in the
framebuffer. Without blending, the new fragment will overwrite the value in the framebuffer. The
only way to avoid this is to enable the OpenGL built-in blending function. Using the blending
function glBlendFunc(GL_ONE, GL_ONE), it is possible to update the value that is already in
the framebuffer by adding the new value computed by the fragment program. Figure 4(a) shows
the L-buffers corresponding to Figure 4(b).

(a) L-buffer. (b) Radiographic image.

Figure 4: Examples of 1024× 768 images computed from a polygon mesh consisting of 202,520
triangles.

3.4 Computation of the X-ray attenuation
An intermediate stage is required to compute

∑
i µ(i)Lp(i) in Eq. 2. This second pass is stored into

another FBO, called FBO (
∑
i µ(i)Lp(i)). A textured rectangle of the size of the X-ray detector is

drawn using the texture that is attached to FBO (Lp(i)). To compute
∑
i µ(i)Lp(i), glBlendFunc(

GL_CONSTANT_ALPHA, GL_ONE) is used with glBlendColor(1.0, 1.0, 1.0, µ(i)).
Similarly, in the final stage, a textured rectangle of the size of the X-ray detector is rendered

to compute the total attenuation (Nout in Eq. 2). This can be achieved by a fragment program
that makes use of the texture attached to FBO (

∑
i µ(i)Lp(i)). Figure 4(b) shows the computed

image from the L-buffer of Figure 4(a).

3.5 Correcting Artefacts
When intersections occur between a ray and an object, there should be the same number of
incoming and outgoing intersections. However, some intersections may be duplicated when the ray
hits triangle edges or vertices. Also, uncertainty occurs when the normal vector Ni is perpendicular
to the viewing direction. In these cases, black or white pixel artefacts in the final image will appear
depending on the orientation of the normal vector. Figure 5(a) shows such a X-ray image from a
complex scene without artefact correction. It makes use of a human model made up of the ribs,

7

(a) Without filtering. (b) With adaptative filtering.

Figure 5: Effect of the artefact correction filtering.

spine, sternum, diaphragm, lungs, cartilage, liver and skin.
However, it is possible to detect for each pixel if such artefacts will occur and correct them

using image processing. Indeed, Eq. 5 should always be null for every pixel:
n∑
i=1

sgn(viewVec.Ni) (5)

with n the number of intersections between the ray and the processed triangle mesh. The fragment
shader used to compute the L-buffer can be extended so that the sign of the dot product is stored
into the green channel of the L-buffer texture. The sum operation in Eq. 5 is performed by taking
advantage of the blending function used during the L-buffer computations. Before using any value
of the L-buffer, we check the validity of the green component. If the green component is not null,
then the L-buffer value is invalid. To avoid the artefact, it is replaced by the average value of the
valid pixels within its direct neighbourhood. Figure 5(b) shows the X-ray image corresponding to
Figure 5(a) when artefact correction is enabled.

4 Results and discussion
Radiographs usually represent the negative images of the attenuation, e.g. highly attenuating
materials such as bones are in white and gas in black. Figure 6 presents such medical images. CT
datasets have been segmented to extract polygon meshes. The hip model is composed of the bowels,
fat, muscle and bones. Note that the hands are visible on the top of the image. The foot model
is made of muscle and bones only. In [18], we show how to integrate our GPU implementation
within an interactive training simulator for percutaneous transhepatic cholangiography procedures.
It makes use of dynamic data that simulates the patient respiration.

To further assess the performance of our method, we first compare the computation time with
a CPU implementation. Then, we compare computed images with a reference image simulated
using the CPU implementation. The images have been computed on GPUs using full floating
point precision (128 bits per pixel) or half floating point precision (64 bits per pixel). Three GPUs
from NVIDIA have been selected: i) GeForce 8800 GTX, a high-end gaming graphics processor,

8

(a) Hip. (b) Left foot. (c) Left foot.

Figure 6: Simulated radiographs.

ii) GeForce 8600M GT, a graphics processor for laptops, and iii) Quadro FX 3500, a high-end
professional graphics processor for workstations. The test results of the CPU implementation are
based on an Intel Core 2 Duo E6600 (2.4 Ghz) and 2 GB of RAM with 64-bit Linux operating
system.

4.1 Computation time
The computational performance is given in number of generated frames per second (FPS). Fig-
ure 4(b) shows an example of the computed images. Using test objects with 11,102, 47,794,
202,520 and 871,414 triangles, the running times of the GPU and CPU implementations to gener-
ate a predefined animation of 1000 frames were recorded. We also simulated images of increasing
resolutions. The average cover of the detector area by the test object is 21.5%.

When assessing the performance, two different scenarios can be identified as regards the data
transfer between GPU and CPU, which can be a bottleneck. In many cases, there is no need
to transfer any data from the GPU to the CPU (see Figures 7(a) and 7(c)). For example, to
simulate a radiograph taking into account the finite size of the X-ray tube focus (causing geo-
metric unsharpness), many projections have to be carried out with a collection of source points
representing the focal spot. These image contributions only have to be integrated to obtain the
final image. The integration can be done in the same FBO using the blending function. If every
simulated image has to be transferred to the RAM (see Figures 7(b) and 7(d)), the time required
to transfer the data may become the limiting factor. A test case confirmed this assumption when
small numbers of polygons are considered. For objects with a high number of triangles, the data
transfer is a limited expense in the overall computation time.

It can be observed in Figure 7(a) that when the number of pixels becomes very high, the
number of FPS tends to decrease linearly with a slope equal to −1 in the logarithmic graph. It
corresponds to the fact that the fragment calculations become the prevailing component in the
computation time, and the number of FPS is then inversely proportional to the number of pixels.
The same type of behaviour is observed with respect to the number of triangles of the mesh
(Figure 7(c)). When the number of triangles increases, the number of FPS also tends to decrease
linearly with a slope of −1, meaning that the vertex calculations prevail in the computation time.
In the case of objects with 871,414 triangles, the GPU implementation using full floating point
precision is up to 61 times faster than the CPU implementation. With the least powerful GPU,
the performance obtained using the highest resolution triangle mesh still enables interactive frame
rates.

When every frame is transferred from the GPU to the RAM, the number of FPS tends to
decrease linearly with a slope equal to −1 in the logarithmic graph and the number of FPS is then
inversely proportional to the number of pixels (see Figure 7(b)). The number of FPS tends to be

9

 10

 100

 1000

25
6x

19
2

34
1x

25
6

51
2x

38
4

10
24

x7
68

13
65

x1
02

4

N
um

be
r

of
 fr

am
es

pe
r

se
co

nd
 (

F
P

S
)

Number of pixels

Performance comparison with direct display (no transfer to RAM)

(1) CPU implementation
(2) NVIDIA GeForce 8800 GTX (full-float)
(3) NVIDIA GeForce 8800 GTX (half-float)
(4) NVIDIA GeForce 8600 GS (full-float)
(5) NVIDIA GeForce 8600 GS (half-float)
(6) NVIDIA Quadro FX 3500 (half-float)

(a) Number of radiographs computed in one second,
from a polygon mesh consisting of 11,102 triangles,
with respect to the image resolution, with direct dis-
play (no transfer to RAM).

 10

 100

 1000

25
6x

19
2

34
1x

25
6

51
2x

38
4

10
24

x7
68

13
65

x1
02

4

N
um

be
r

of
 fr

am
es

pe
r

se
co

nd
 (

F
P

S
)

Number of pixels

Performance comparison with transfer to RAM

(1)
(2)
(3)
(4)
(5)
(6)

(b) Idem Fig. 7(a) but with transfer of each frame from
GPU to RAM.

 10

 100

 1000

11
10

2

47
79

4

20
25

20

87
14

14

N
um

be
r

of
 fr

am
es

pe
r

se
co

nd
 (

F
P

S
)

Number of triangles of the object

Performance comparison with direct display (no transfer to RAM)

(1)
(2)
(3)
(4)
(5)
(6)

(c) Number of radiographs (1024 × 768 pixels) com-
puted in one second, with respect to the polygon mesh
resolution, with direct display (no transfer to RAM).

 10

 100

 1000

11
10

2

47
79

4

20
25

20

87
14

14

N
um

be
r

of
 fr

am
es

pe
r

se
co

nd
 (

F
P

S
)

Number of triangles of the object

Performance comparison with transfer to RAM

(1)
(2)
(3)
(4)
(5)
(6)

(d) Idem Fig. 7(c) but with transfer of each frame from
GPU to RAM.

Figure 7: Number of radiographs of the whole object, with 21.5% detector coverage, computed
in one second.

10

constant when the number of triangles increases, unless the number of triangles is very high (see
Figure 7(d)). It corresponds to the fact that i) the time required to transfer the data, which is
constant at a given pixel resolution, becomes the limiting factor when small numbers of polygons
are considered, and ii) for objects with a high number of triangles, the data transfer becomes
negligible. In the case of an image with 1024× 768 pixels, transferring every frame to the RAM,
the performance is up to 9 times slower for objects with 11,102 triangles and 2 times slower for
objects with 871,414 triangles.

4.2 Accuracy
To validate the accuracy of our GPU implementation, we simulate an image with the same physical
parameters on every platform and we compare intensities pixel by pixel with a reference image
computed with the CPU implementation (see Figure 8). The gray square in Figure 8(a) shows the

(a) The gray rectangle indicates the reference image
used for accuracy tests.

(b) Reference image used for accuracy comparison
(1024 × 768 pixels). See Figure 9 for profiles corres-
ponding to the gray line.

Figure 8: Test image used in accuracy comparison.

region of the scanned object that has been chosen for the accuracy comparison. Comparing the
results with the full image would underestimate the average error because of the high proportion
of rays which do not intersect the object. In the chosen region, 99.42% of the rays are attenuated
by the object. Figure 9 shows clos-up diagonal profiles of the images computed with the GPUs
and with the CPU. It illustrates that simulations performed on GPUs are relatively close to
the reference simulation. Profiles extracted from the images computed with full floating point
precision accurately match the profile from the reference image. This contrasts with computations
performed using half floating point precision.

To quantify inacuracy, disparity measurements using the pixelwise relative error were computed
for each test image computed on GPUs with respect to the reference image (see Table 1). The
error metrics is computed pixelwise as follows:

δ(i, j) = |A(i, j)−B(i, j)|
B(i, j) (6)

with A the image computed on GPUs and B the reference image. These results confirm our
hypothesis that a fast and accurate GPU implementation of X-ray simulation can be implemented
with full floating precision. Using half floating point precision, the accuracy of computations is
somewhat reduced but the relative error stays below 1.2%.

11

 2.275

 2.28

 2.285

 2.29

 2.295

 2.3

 2.305

 2.31

 20 40 60 80 100 120 140 160 180

In
te

ns
ity

Pixel

CPU implementation using 64-bit floating point precision
GPU implementation using 32-bit floating point precision
GPU implementation using 16-bit floating point precision

Figure 9: Close-up of profiles diagonal profiles corresponding to Figure 8(b).

Table 1: Disparity measurements.

Maximum Average
Precision GPU error error
full float GeForce 8800 GTX 2.55e−3 2.19e−6

half float GeForce 8800 GTX 1.20e−2 1.36e−3

full float GeForce 8600M GT 2.55e−3 2.22e−6

half float GeForce 8600M GT 1.20e−2 1.36e−3

half float Quadro FX 3500 1.12e−2 1.36e−3

12

5 Conclusion
The simulation of X-ray transmission imaging using common CPU-based approaches is highly
time consuming. The use of the GPU allows the simulation to be accelerated considerably. Our
implementation has proved to be both fast and accurate.

Acknowledgements
This work has been partially funded by the UK Department of Health under the Health Technology
Devices programme and commissioned by the National Institute for Health Research (NIHR). This
is independent research and the views expressed are those of the authors and not necessarily those
of the NHS, the NIHR or the Department of Health.

References
[1] A. Bonin, B. Chalmond, and B. Lavayssière. Monte-Carlo simulation of industrial radiography

images and experimental designs. NDT & E International, 35(8):503–510, 2002.

[2] P. Duvauchelle, N. Freud, V. Kaftandjian, and D. Babot. A computer code to simulate x-ray
imaging techniques. Nuclear Instruments and Methods in Physics Research B, 170(1-2):245–
258, 2000.

[3] C. Everitt. Interactive order-independent transparency. White paper, NVIDIA OpenGL
Applications Engineering, 2001. Available at http://developer.nvidia.com/object/
Interactive_Order_Transparency.html (accessed 27th March 2008).

[4] N. Freud, P. Duvauchelle, J. M. Létang, and D. Babot. Fast and robust ray casting al-
gorithms for virtual X-ray imaging. Nuclear Instruments and Methods in Physics Research
B, 248(1):175–180, 2006.

[5] N. Freud, J.-M. Létang, and D. Babot. A hybrid approach to simulate X-ray imaging tech-
niques, combining Monte Carlo and deterministic algorithms. IEEE Transactions on Nuclear
Science, 52(5):1329–1334, 2005.

[6] N. Freud, J. M. Létang, C. Mary, C. Boudou, C. Ferrero, H. Elleaume, A. Bravin, F. Estève,
and D. Babot. Fast dose calculation for stereotactic synchrotron radiotherapy. In Proceedings
of the 29th IEEE EMBS, pages 3914–3917, 2007.

[7] F. Inanc, J. N. Gray, T. Jensen, and J. Xu. Human body radiography simulations: devel-
opment of a virtual radiography environment. In Physics of Medical Imaging, volume 3336,
pages 830–837, 1998.

[8] D. Laney, S. P. Callahan, N. Max, C. T. Silva, S. Langer, and R. Frank. Hardware-accelerated
simulated radiography. In IEEE Visualization 2005 (VIS’ 05), pages 343–350, 2005.

[9] D. Lazos, Z. Kolitsi, and N. Pallikarakis. A software data generator for radiographic imaging
investigations. IEEE Transactions on Information Technology in Biomedicine, 4(1):76–79,
2000.

[10] J.-M. Létang, N. Freud, and G. Peix. Signal-to-noise ratio criterion for the optimization of
dual-energy acquisition using virtual X-ray imaging: application to glass wool. Journal of
Electronic Imaging, 13(3):436–449, 2004.

[11] M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics and Applications,
8(3):29–37, 1988.

13

http://developer.nvidia.com/object/Interactive_Order_Transparency.html
http://developer.nvidia.com/object/Interactive_Order_Transparency.html

[12] N. Li, S.-H. Kim, J.-H. Suh, S.-H. Cho, J.-G. Choi, and M.-H. Kim. Virtual x-ray imaging
techniques in an immersive casting simulation environment. Nuclear Instruments and Methods
in Physics Research B, 262:143Ű–152, 2007.

[13] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T. J.
Purcell. A survey of general-purpose computation on graphics hardware. Computer Graphics
Forum, 26(1):80–113, 2007.

[14] A. S. Pasciak and J. R. Ford. A new high speed solution for the evaluation of monte carlo
radiation transport computations. IEEE Transactions on Nuclear Science, 53(2):491–499,
2006.

[15] R. J. Rost. OpenGL Shading Language. Addison-Wesley Professional, 2nd edition, 2006.

[16] J. Spoerk, H. Bergmann, F. Wanschitz, S. Dong, andW. Birkfellner. Fast DRR splat rendering
using common consumer graphics hardware. Medical Physics, 34(11):4302–4308, 2007.

[17] F. P. Vidal, N. W. John, and R. M. Guillemot. Interactive physically-based x-ray simulation:
CPU or GPU? In Medicine Meets Virtual Reality 15, pages 479–481, 2007.

[18] P. Villard, F. P. Vidal, C. Hunt, F. Bello, N. W. John, S. Johnson, and D. A. Gould. Simula-
tion of percutaneous transhepatic cholangiography training simulator with real-time breath-
ing motion. In Proceeding of the 23rd International Congress of CARS - Computer Assisted
Radiology and Surgery, 2009.

[19] L. Westover. Interactive volume rendering. In Proceedings of the 1989 Chapel Hill workshop
on Volume visualization, pages 9–16, 1989.

[20] H. Yan, L. Ren, D. J. Godfrey, and F. F. Yin. Accelerating reconstruction of reference digital
tomosynthesis using graphics hardware. Medical Physics, 34(10):3768–3776, 2007.

14

	Abstract
	Introduction
	Context and objectives
	Simulation algorithm
	Attenuation law
	Overview
	Computation of path length
	Computation of the X-ray attenuation
	Correcting Artefacts

	Results and discussion
	Computation time
	Accuracy

	Conclusion

