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1

The core principle in nuclear medicine is to administer a radioactive substance called tracer to
patients. It is absorbed by tissue in proportion to a physiological process. In oncology, it is
the growth of tumour cells. The reconstruction allows the recovery of the 3D distribution of the
tracer through the body (see Fig.[1(a)]). There are two kinds of tomographic modality in nuclear
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Introduction

medicine:

Single-photon emission computed tomography (SPECT) makes use of gamma emitters,

i.e. photons, as a radio-tracer.

PET makes use of positron emitters. This is the modality that we will consider in this

article.

Fig. illustrate the PET acquisition process. After interactions, a positron combines with
an electron. It generally produces two photons of 511 kiloelectron volt (keV) emitted in opposite
directions. They are detected in ‘coincidence’ (i.e. almost at the same time). The line between
the detectors that have been activated for a given pair of photons is called line of response (LOR).

*now with INRA-AgroParisTech, Thiverval-Grignon, France
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Figure 1: PET imaging.

Section [2] presents background materials about tomography reconstruction using standard
methods and preliminary results obtained using our cooperative coevolution strategy. Section
details the evolutionary algorithm that we developed for positron emission tomography recon-
struction. New results and conclusions are presented in Section [] and [5] respectively.

2 Background

2.1 Tomography Reconstruction

An overview of reconstruction methods in nuclear medicine can be found in [2I]. They are often
divided in two classes.

2.1.1 Analytical methods

They are based on a continuous modelling and the reconstruction process consists of the inversion
of measurement equations (see Fig. . The most frequently used is the filtered back-projection
(FBP) algorithm [9].

These reconstruction methods inverse the Radon transform. The projection data consists of
the observed data. It is what is known and it corresponds to the Radon transform (or forward-
projection) of the real activity. The real activity is unknown and the tomography reconstruction
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Figure 2: Analytic reconstruction.



aims at recovering the activity. It is performed by using the Inverse Radon transform (or back-
projection) to create an estimated activity map from the projections.

2.1.2 Iterative statistical methods

They are based on iterative correction algorithms (see Fig. [3) [13].
Iterative methods are relatively easy to model:

o the reconstruction starts using an initial estimate of the image (generally a constant image),
e projection data is computed from this image,

e the estimated projections are compared with the measured projections,

o corrections are made to update the estimated image, and

o the algorithm iterates until a convergence thhreshold — between the estimated and measured
projection sets — has been reached.

There are different ways to implement these iterative methods. The main differences are about
the computation of the projections, how the physics corrections (scattering, random, attenuation,
etc.) are applied, and how the error corrections are applied in the estimated projections.

The maximum-likelihood expectation-maximisation (ML-EM) [12] and ordered subset
expectation-maximisation (OS-EM) [7] are the most widely used techniques PET. They are iterat-
ive methods. ML-EM assumes Poisson noise is present in the measured data. It does not produce
the artefacts seen in classic FBP reconstructions, and it has a better signal-to-noise ratio in region
of low concentration. However, the algorithm is known to converge rather slowly. OS-EM has
been proposed to speed-up convergence of the expectation-maximisation (EM) algorithm and it
has become the reference reconstruction method. Its principle is to reduce the amount of projec-
tions used at each iteration of the EM algorithm by subdividing the projections in K sub-groups.
The projections of a sub-group are uniformly distributed around the volume to reconstruct.

ML-EM and its derivative, OS-EM are gold standard reconstruction techniques in nuclear
medicine. These reference reconstruction methods, however, suffer from factors that limit the
quantitative analysis of their results, hence limit their exploitation during the treatment planning
process and during treatment monitoring.

Prior to the reconstruction, the LOR data is often rebinned into a sinogram [6, [I0]. This
intermediate data representation corresponds to projection data that can be used by conventional
tomographic reconstruction codes. A broad overview of reconstruction methods using projection
data in nuclear medicine can be found in [I0, 20]. Using sinograms in PET introduces drawbacks
(such as sampling, difficulties to take advantages of physics and geometrical properties of the
imaging system, etc.) and, therefore, a new approach dedicated to PET is required to directly use
the list-mode data. Other limiting factors include the use of noisy, large and complex datasets,
complex physical phenomena (such as Compton scattering and gamma attenuation for example),
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Figure 3: Tterative method model.



and the movement of patients (including the motion of internal structures due to respiration). It
is possible to take them into account to attenuate the artefacts that they generate in reconstructed
images, e.g. by ‘cleaning’ sinograms or writing dedicated correction algorithms for list-mode data,
and this has been an active field of research for quite some time. However, these technologies are
not readily available in the clinic, mainly because of the heavy computational power that they
require and/or the difficulty of modelling all these corrections in standard algorithms.

2.2 Evolutionary reconstruction

The algorithm that we present here follows the iterative algorithm paradigm. Image reconstruction
in tomography is an inverse problem that is ill-posed: a solution does not necessarily exist (e.g. in
extreme cases of excessive noise), and the solution may not be unique. This problem can be
solved as an optimisation problem, and on such cases, evolutionary algorithms (EAs) have been
proven efficient in general, and in particular in medical imaging [3, B, [19]. An EA is a stochastic
optimisation tool that relies on Darwin’s principles to mimic complex natural behaviours [2].
In particular, it makes use of ‘genetic operators’ based on the biological mechanisms of natural
evolution (e.g. reproduction, mutation, recombination, and selection). The candidate solutions to
the problem to be solved by optimisation are called ‘individuals’ Individuals are grouped into a
population. The population evolves using the repeated application of the genetic operators. The
adequacy of an individual ‘to live’ in its environment is measured using a ‘fitness function’ (also
called ‘cost function’). After convergence, the ‘best’ individual is extracted. It corresponds to the
solution of the optimisation problem.

In preliminary studies, we introduced a cooperative coevolution strategy (or “Parisian evol-
ution”) called “fly algorithm” [I1]. Cooperative-coevolution approaches rely on a formulation of
the optimisation problem as a collection of interdependent subproblems. The population is thus
made of simpler items, parts of a full solution, that “cooperate” to build the searched optimum.
A Parisian EA (see Fig. 4) generally contains all the usual components of an EA, plus 2 levels of
fitness:

o Global fitness computed on the whole population. It may be the sum (or a complex combin-
ation) of local fitnesses.

e Local fitness computed on each individual to assess their own contribution to the global
solution. The local fitness of an individual may be defined as its marginal contribution to
the global fitness.
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Figure 4: Parisian approach principles.



Contrary to traditional EAs, the Fly algorithm embeds the searched solution within the whole
population, letting each individual be only a part of the solution. The validity of this approach has
been first demonstrated for SPECT reconstruction [4]. The searched distribution of radionuclides
is modelled as a sample set of 3D points, the population of “flies”. For SPECT, each fly emits
~v-photons. Using a cooperative co-evolution scheme to optimise the position of radionuclides, the
population of flies evolves so that the data estimated from flies matches measured data. The final
population approximates the radioactivity concentration (see Fig. |5| for an example in SPECT).

(a) Reference image: acquired (b) Reconstructed data: pro-
SPECT projections of a bone jections of the reconstructed
scan. slices.

Figure 5: Fly reconstruction in SPECT [4].

The approach has been extended to the more complicated case of PET reconstruction [I5]. It
showed promising results in relatively simple test cases in fully-3D LOR space [16, 18, 17, [14]. The
size and relative concentration of objects can be retrieved (see Fig. @ for an example in PET). Full
width at half maximum (FWHM) is measured to quantify errors in Fig. @] (see Table. The error
is smaller that the size of crystals, which is 4.5 mm (see Section [4] for details about the simulated
system geometry). Fig.[7| shows that complex shapes can also be reconstructed in fully-3D.

3 Material and Methods

As illustrated by the flow chart of our Fly algorithm for PET (see Fig. , the evolutionary scheme
for tomography reconstruction follows the iterative paradigm (see Fig.[3)). The steps of the iterative
method, as of Fig. [3] can be described as follows:
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Figure 6: PET reconstruction using the Fly algorithm: 9 cylinders having 2 different radii (1 cm
and 2.5 cm) and 5 different radioactivity concentrations (Cy = 114,590 count/ml, Cy = 2Cy, C3
= 3C4, etc.) [18| [14].

Table 1: FWHM in mm estimated from Fig. @

FWHM in FWHM in
Fig. Fig. (fly Absolute difference
(reference) reconstruction)

1 19 18 1

2 49 48 1

3 19 18 1

4 49 47 2

5 19 17 2




Figure 7: Simulation performed using the dragon model from The Stanford 3D Scanning Repos-

itory, http://graphics.stanford.edu/data/3Dscanrep/ The object is uniformly filled with
radiotracers (top row). The reconstructed radiotracer distribution is displayed using volume ren-
dering (bottom row).



http://graphics.stanford.edu/data/3Dscanrep/

NO,

Use simple
back-projection

Compute initial estimate using
uniformly distributed random positions

Compute initial estimate using
simple back-projection

Initialise position of flies

»| Select a bad fly

Delete fly's LORs

Select genetic operator

Record fly's LORs

Simulate n annihilations for current fly |

All flies have
been created

YES

Select a good fly

A

NO

| Create a random fly |

| Create new fly from good fly by mutation

Figure 8: Flow chart of the PET reconstruction using the Fly algorithm.

\wL

| Simulate n annihilations for current fly |

Convergence Record fly's LORs

Good resolution

Extract
Concentration
of good flies



3.1 [Initial guess

Each individual, or fly, corresponds to a 3D point. Initially, the flies’ position is randomly generated
in the volume within the scanner. Iterative reconstruction methods generally make use of a
constant volume as an initial estimate of the volume (see Fig. . However, to speed-up the
reconstruction process, a volume is first reconstructed using a fast analytical algorithm, the simple
back-projection, that we implemented on the graphics card using OpenGL. The algorithm consists
in back-projecting each LOR into the volume space. Pixels along the path of a LOR are updated
uniformly, i.e. without taking into account photon attenuation. This operation is fast and provides
the evolutionary algorithm with an initial guess of the volume (see Fig. . For each voxel of the
initial estimate, a given number of flies is uniformly distributed depending on the voxel intensity

(see Fig.[9(b)).

(a) Uniform distribution of the (b) Initialisation of the flies’ po- (c) Image reconstructed using
flies. sition using Fig. the simple back projection al-
gorithm.

Figure 9: Initial estimates of the reconstructed image used in Fig. @

3.2 Compute projections

Each fly mimics a radioactive emitter, i.e. n stochastic simulations of annihilation events are
performed to compute the fly’s illumination pattern. For each annihilation event, a photon is
emitted in a random direction. A second photon is then emitted in the opposite direction. If
both photons are almost simultaneously detected by the scanner according to a coincidence time
window, the corresponding LOR is recorded. The scanner properties (e.g. detector blocks and
crystals positions) are modelled, and each fly is producing an adjustable number of annihilation
events (see Fig. . Each fly keeps a record of its simulated LORs. Therefore the result of these

Figure 10: Using a geometry corresponding to the GE Discovery' PET-CT 690 scanner: in red
crystals, last created fly’s LOR in purple lines, fly’s positions in coloured dots.



simulations consists of a list, per fly, of pairs of detector identification numbers that correspond
to LORs. These lists are aggregated to form the population total illumination pattern, which
should closely match the data recorded by the PET scanner. They correspond to sparse matrices
containing coincidence data.

3.3 Compare

The global fitness function used during the selection operation measures the discrepancies between
the simulated projections and the real projections (see [I4] for details about our specific genetic
operators and the fitness metric). The City block distance between the two sparse matrices has
been chosen as it provides a good compromise between accuracy and speed. The aims of the
evolutionary algorithm is to minimise the global fitness function, i.e. the distance between these
two sets of data. The smaller the distance is, the closer the reconstructed data will be to the real
radioactive activity.

3.4 Correct for differences

The optimisation of the radioactive emitter positions is performed using genetic operations instead
of the EM method. The population of flies evolves so that the population total pattern matches
measured data. We chose to implement a “steady state” evolutionary strategy, in which at each
loop one individual (fly) has to be eliminated and replaced with a new fly. The fly to be killed is
randomly chosen by the “selection” operator, with a bias towards killing “bad” individuals. On the
other hand, if the new fly is to be created by mutation of another fly, this fly is randomly chosen
by the “selection” operator, with a bias towards reproducing “good” individuals. The selection
operator makes use of the local fitness, i.e. the individual fitness of flies. Classical selection
operators are ranking, roulette wheel and tournament.

When we were addressing the SPECT problem, we showed that if we defined the fitness of a
fly as a bonus-based function then it gave an important bias to the algorithm with a tendency of
the smaller objects to disappear [4]. This is why we then introduced marginal evaluation (F,,(¢))
to assess a given fly (). It is based on the leave-one-out cross-validation method. We use a similar
approach in PET:

Fp, (i) = dist (pop, input) — dist (pop — {i} , input) (1)
with Fp,(¢) the marginal fitness of Fly 4, dist (A, B) the City block distance between two sparse
matrices A and B, pop is the set of LORs simulated by the whole population, input is the set of
LORs extracted from the input data, and pop — {i} is the set of LORs simulated by the whole
population without Fly 7. The fitness of a given fly will only be positive when the global cost is
lower (better) in presence rather than in the absence of this fly.

In our algorithm, as each fly’s fitness is the value of its (negative or positive) contribution to
the quality of the whole population, we managed to simplify and speed up the selection process
by using a fixed fitness threshold. Any “bad” fly (its fitness is negative) is a candidate for death,
and any “good” fly (its fitness is positive) is a candidate for mutation. When a fly is killed, its
LORs are removed from the total set of simulated LORs. When a new fly is created, its LORs are
added. This process needs to be fast to be able to decrease the number of bad flies and increase
the number of good flies as much as possible.

When the number of flies with a negative fitness decreases, the threshold selection fails to
provide flies to be killed in an acceptable time. It also means that the reconstruction is optimum
at the current resolution. If the resolution is not acceptable, then a mitosis operator is triggered to
gradually increase the population size. Each fly is split into two new flies to double the population
size. One of the two flies is then mutated.

3.5 Stopping criteria

The algorithm iterates until convergence of the estimated data with the measured data. After
convergence the spacial concentration of flies will correspond to an estimate of the radionuclide
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concentration.

4 Results

In [I5} [16], we showed the ability of the early version of the algorithm (i.e. without taking advantage
of some specific genetic operators we designed in [I8] [14]) to reconstruct simple 2D objects at low
resolution. In [I4], results at higher resolution were presented.

This section presents new results, obtained using our specific genetic operators, with more
sophisticated numerical phantoms of growing complexity. The pixel intensity is proportional to
the concentration of radio-tracers.

We initially focus on the 2D case to validate qualitative results of the algorithm. No attenuation
and no scattering are taken into account. A 2D scanner has been simulated. Its diameter is 85 cm,
and the crystal width is 4.5 mm. The scanner is made of 72 blocks of 8 crystals each. Images
in Figures to show raw data (i.e. no low-pass filter is applied to smooth the images) of

(a) Hot sphere, (b) Hot sphere, (c) Jaszczak cold (d) Jaszczak
reference image. reconstructed sphere, reference cold sphere,
data. image. reconstructed

data.
Figure 11: 2D tomographic reconstruction of Jaszczak-inspired sphere phantoms using the Fly
algorithm dedicated to PET.

(a) Jaszczak hot (b) Jaszczak (c) Jaszczak cold (d) Jaszczak
rodes, reference hot rodes, re- rodes, reference cold rodes,
image. constructed image. reconstructed

data. data.
Figure 12: 2D tomographic reconstructions of Jaszczak-inspired rode phantoms using the Fly

algorithm.

o L]
(a) Cardiac ex- (b) Cardiac (c) Hoffman (d) Hoffman
ample, reference example, re- phantom, refer- phantom, re-
image. constructed ence image. constructed

data. data.
Figure 13: 2D tomographic reconstructions of more anatomically-realistic phantoms using Fly

algorithm.
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Figure 14: Simulation of the GE Discovery = PET-CT 690 using Gate.

the reference objects that have been used to generate input data, as well as the corresponding
slices reconstructed using the fly algorithm. The pixel size is about 1.7 x 1.7 mm?2. A series of
four tests inspired of the Standard Jaszczak phantom have been used: hot and cold spheres first
(see Fig. , then hot and cold rodes (see Fig. . Fig. illustrates the fifth and sixth tests.
They make used of more anatomically realistic models: a slice through the chest, and the Hoffman
phantom (brain).

The fully-3D reconstruction of an object with a complex shape is presented in Fig. 7] and
in [I4]. However, only a low-resolution has been used. We now have implemented a realistic
geometry based on an actual clinical PET scanner corresponding to GE Discovery = PET-CT 690
(see Fig.[14). It is made of 13824 Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystals
organised in 64 sectors. Each sector contains 4 modules of a 9x6 crystals array. The crystal
dimensions are 4.2x25x6.3 mm?. The final geometry is a cylinder with a ring diameter and axial
field of view of 81 c¢cm and 157 mm respectively. It is modelled using Gate, a validated med-
ical physics simulation platform [§] dedicated to emission tomography in nuclear medicine. It is
developed by the OpenGATE collaboratiorﬂ and seats on the top of Geant4 [I]. The latter is
a widely used open-source platform for nuclear physics simulation. It is developed by European
Organization for Nuclear Research (CERN). The level of physics realism can be controlled. For ex-
ample, in our initial test presented here, Compton scattering is disabled and both “PhotoElectric”
and “Electronlonisation” are enabled to detect interactions in crystals. The aim is to generate
realistic data in controlled test cases of increasing complexity. Two spherical radioactive sources
of 1 megabecquerel (MBq) activity are included (see Fig. . The first one is located at the
centre of the PET system and its radius is 10 mm. The second one, whose radius is 5 mm, is
shifted by 10 centimetres in each direction. It is therefore outside the field of view. Random
coincidences (single photons of two different annihilations generating a LOR) are recorded and
correspond to an additive noise to the data. The aim is to assess the robustness of the algorithm.
About 1.3e6 LOR in total have been recorded. Fig. shows the cloud of flies at a given step
in the reconstruction. As expected, only the sphere that is in the field of view of the scanner
has been reconstructed. Fig. shows the middle slice of the reconstructed volume and a profile
corresponding to its middle line. The diameter of the reconstructed sphere is about 20 mm, which
is relatively accurate.

Thttp://opengatecollaboration.healthgrid.org
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Figure 15: Cloud of flies during the reconstruction.
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Figure 16: PET reconstruction using the Fly algorithm.

13



5 Conclusion

This paper presented new results of positron emission tomographic reconstruction using a specific
cooperative co-evolution scheme based on the fly algorithm. It demonstrated the ability of the
algorithm to reconstruct images using input data that corresponds to standard phantom models
(the Standard Jaszczak phantom) and anatomically realistic models (cardiac and brain). However,
the reconstruction of hot regions seems better than the reconstruction of cold areas; this needs
to be addressed, e.g. by adding a regularisation step in the iterative process. It also showed that
realistic models implemented in Gate can be used.

A comparison study with traditional reconstruction tools, such as OS-EM, will be conducted.
More realistic physics processes will be progressively added. Further work will therefore include
the correction of such phenomena in the modelled system matrix, e.g. photon attenuation and
Compton scattering.
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Acronyms
2D two-dimensional.
3D three-dimensional.
AE Artificial Evolution.

CERN  European Organization for Nuclear Research.

CT computerised tomography.
EA evolutionary algorithm.
EM expectation-maximisation.
FBP filtered back-projection.
keV kiloelectron volt.

LOR line of response.

LYSO Cerium-doped Lutetium Yttrium Orthosilicate.

MBq megabecquerel.
ML-EM  maximum-likelihood expectation-maximisation.

OS-EM  ordered subset expectation-maximisation.
PET positron emission tomography.

SPECT single-photon emission computed tomography.

References

[1] S. Agostinelli and et al. GEANT4 - a simulation toolkit. Nucl. Instrum. Methods Phys. Res.,
Sect. A, 506(3):250-303, 2003. DOI: 10.1016,/S0168-9002(03)01368-8!

14


http://dx.doi.org/10.1016/S0168-9002(03)01368-8

2]

3]

[15]

[16]

T. Baeck, D. B. Fogel, and Z. Michalewicz, editors. FEwvolutionary Computation 1: Basic
Algorithms and Operators. Taylor & Francis, 2000. ISBN: 978-0750306645.

P. A. N. Bosman and T. Alderliesten. Evolutionary algorithms for medical simulations: a case
study in minimally-invasive vascular interventions. In Workshops on Genetic and Fvolutionary
Computation 2005, pages 125-132, 2005. DOI: 10.1145/1102256.1102286.

A. Bousquet, J. Louchet, and J.-M. Rocchisani. Fully three-dimensional tomographic evolu-
tionary reconstruction in nuclear medicine. In Proceedings of the 8th international conference
on Artificial Evolution (EA’07), volume 4926 of Lecture Notes in Computer Science, pages
231-242, 2007.

S. Cagnoni, A. B. Dobrzeniecki, R. Poli, and J. C. Yanch. Genetic algorithm-based interactive
segmentation of 3D medical images. Image Vision Comput., 17(12):881-895, 1999. DOL:
10.1016/50262-8856(98)00166-8.

F. H. Fahey. Data acquisition in PET imaging. J. Nucl. Med. Technol., 30(2):39-49, 2002.

H. M. Hudson and R. S. Larkin. Accelerated image reconstruction using ordered subsets of
projection data. IEEE Trans. Med. Imaging, 13(4):601-609, 1994. DOI: 10.1109/42.363108.

S. Jan and et al. GATE: a simulation toolkit for PET and SPECT. Physics in Medicine and
Biology, 49:4543-4561, 2004.

A. C. Kak and M. Slaney. Principles of computerized tomographic imaging. Society of Indus-
trial and Applied Mathematics, 2001. ISBN: 978-0898714944.

R. M. Lewitt and S. Matej. Overview of methods for image reconstruction from projections in
emission computed tomography. In Proc. of IEEFE, volume 91, pages 1588-1611, 2003. [DOL:
10.1109/JPROC.2003.817882.

J. Louchet. Stereo analysis using individual evolution strategy. In Proc. ICPR’00, pages
908-911, 2000. DOI: 10.1109/ICPR.2000.905580.

L. A. Shepp and Y. Vardi. Maximum likelihood reconstruction for emission tomography.
IEEE Trans. Med. Imaging, 1(2):113-122, 1982. DOT: 10.1109/TMI.1982.4307558!

S. Vandenberghe, Y. D’Asseler, R. Van de Walle, T. Kauppinen, M. Koole, L. Bouwens,
K. Van Laere, I. Lemahieu, and R. A. Dierckx. Iterative reconstruction algorithms in
nuclear medicine. Comput. Med. Imaging Graph., 25:105-111, 2001. DOI: 10.1016/S0895-
6111(00)00060-4.

F. Vidal, E. Lutton, J. Louchet, and J.-M. Rocchisani. Threshold selection, mitosis and dual
mutation in cooperative co-evolution: Application to medical 3D tomography. In R. Schaefer,
C. Cotta, J. Kolodziej, and G. Rudolph, editors, Parallel Problem Solving from Nature - PPSN
XI, volume 6238 of Lecture Notes in Computer Science, pages 414-423. Springer Berlin /
Heidelberg, 2011. [DOI: 10.1007/978-3-642-15844-5 42,

F. P. Vidal, D. Lazaro-Ponthus, S. Legoupil, J. Louchet, E. Lutton, and J.-M. Rocchisani. Ar-
tificial evolution for 3D PET reconstruction. In Proceedings of the 9th international conference
on Artificial Evolution (EA’09), volume 5975 of Lecture Notes in Computer Science, pages
37-48, Strasbourg, France, 2010. Springer, Heidelberg. DOI: 10.1007/978-3-642-14156-0_ 4.

F. P. Vidal, J. Louchet, E. Lutton, and J.-M. Rocchisani. PET reconstruction using a co-
operative coevolution strategy in LOR space. In IEEE Nuclear Science Symposium Con-
ference Record, pages 3363-3366, Orlando, Florida, Oct. 2009. IEEE. DOI: 10.1109/NSS-
MIC.2009.5401758.

15


http://dx.doi.org/10.1145/1102256.1102286
http://dx.doi.org/10.1016/S0262-8856(98)00166-8
http://dx.doi.org/10.1016/S0262-8856(98)00166-8
http://dx.doi.org/10.1109/42.363108
http://dx.doi.org/10.1109/JPROC.2003.817882
http://dx.doi.org/10.1109/JPROC.2003.817882
http://dx.doi.org/10.1109/ICPR.2000.905580
http://dx.doi.org/10.1109/TMI.1982.4307558
http://dx.doi.org/10.1016/S0895-6111(00)00060-4
http://dx.doi.org/10.1016/S0895-6111(00)00060-4
http://dx.doi.org/10.1007/978-3-642-15844-5_42
http://dx.doi.org/10.1007/978-3-642-14156-0_4
http://dx.doi.org/10.1109/NSSMIC.2009.5401758
http://dx.doi.org/10.1109/NSSMIC.2009.5401758

[17]

F. P. Vidal, J. Louchet, J. Rocchisani, and E. Lutton. Flies for PET: An artificial evolution
strategy for image reconstruction in nuclear medicine. Medical Physics, 37(6):3139, 2010.
DOI: 10.1118/1.3468200.

F. P. Vidal, J. Louchet, J.-M. Rocchisani, and E. Lutton. New genetic operators in the
Fly algorithm: application to medical PET image reconstruction. In European Workshop on
Evolutionary Computation in Image Analysis and Signal Processing (EvoIASP’10), volume
6024 of Lecture Notes in Computer Science, pages 292-301, Istanbul, Turkey, Apr. 2010.
Springer, Heidelberg. DOI: 10.1007/978-3-642-12239-2 30.

K. Volk, J. F. Miller, and S. L. Smith. Multiple network CGP for the classification of
mammograms. In FvoWorkshops 2009, volume 5484 of LNCS, pages 405-413. Springer, 2009.
DOI: 10.1007/978-3-642-01129-0_ 45,

H. Zaidi, editor. Quantitative Analysis in Nuclear Medicine Imaging. Springer, 2006. ISBN:
978-0-387-23854-8.

G. L. Zeng. Image reconstruction — a tutorial. Comput. Med. Imaging Graph., 25(2):97-103,
2001. DOI: 10.1016/S0895-6111(00)00059-8.

16


http://dx.doi.org/10.1118/1.3468200
http://dx.doi.org/10.1007/978-3-642-12239-2 30
http://dx.doi.org/10.1007/978-3-642-01129-0_45
http://dx.doi.org/10.1016/S0895-6111(00)00059-8

	Abstract
	Introduction
	Background
	Tomography Reconstruction
	Analytical methods
	Iterative statistical methods

	Evolutionary reconstruction

	Material and Methods
	Initial guess
	Compute projections
	Compare
	Correct for differences
	Stopping criteria

	Results
	Conclusion
	Acronyms

